DOI QR코드

DOI QR Code

Changes in Cardiac Structure and Function After Kidney Transplantation: A New Perspective Based on Strain Imaging

  • Darae Kim (Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Minjeong Kim (Division of Cardiology, Myongji Hospital) ;
  • Jae Berm Park (Department of Surgery, Sungkyunkwan University School of Medicine) ;
  • Juhan Lee (Departement of Surgery, Yonsei University College of Medicine) ;
  • Kyu Ha Huh (Departement of Surgery, Yonsei University College of Medicine) ;
  • Geu-Ru Hong (Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine) ;
  • Jong-Won Ha (Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine) ;
  • Jin-Oh Choi (Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Chi Young Shim (Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine)
  • Received : 2022.10.28
  • Accepted : 2022.12.11
  • Published : 2023.04.27

Abstract

BACKGROUND: We aimed to investigate left ventricular (LV) global longitudinal strain (GLS) in end-stage renal disease patients and its change after kidney transplantation (KT). METHODS: We retrospectively reviewed patients who underwent KT between 2007 and 2018 at two tertiary centers. We analyzed 488 patients (median age, 53 years; 58% male) who had obtained echocardiography both before and within 3 years after KT. Conventional echocardiography and LV GLS assessed by two-dimensional speckle-tracking echocardiography were comprehensively analyzed. Patients were classified into three groups according to the absolute value of pre-KT LV GLS (|LV GLS|). We compared longitudinal changes of cardiac structure and function according to pre-KT |LV GLS|. RESULTS: Correlation between pre-KT LV EF and |LV GLS| were statistically significant, but the constant was not high (r = 0.292, p < 0.001). |LV GLS| was widely distributed at corresponding LV EF, especially when the LV EF was > 50%. Patients with severely impaired pre-KT |LV GLS| had significantly larger LV dimension, LV mass index, left atrial volume index, and E/e' and lower LV EF, compared to mildly and moderately reduced pre-KT |LV GLS|. After KT, the LV EF, LV mass index, and |LV GLS| were significantly improved in three groups. Patients with severely impaired pre-KT |LV GLS| showed the most prominent improvement of LV EF and |LV GLS| after KT, compared to other groups. CONCLUSIONS: Improvements in LV structure and function after KT were observed in patients throughout the full spectrum of pre-KT |LV GLS|.

Keywords

Acknowledgement

This study was supported by the Korean Society of Echocardiography.

References

  1. Tonelli M, Wiebe N, Culleton B, et al. Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol 2006;17:2034-47. https://doi.org/10.1681/ASN.2005101085
  2. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004;351:1296-305. https://doi.org/10.1056/NEJMoa041031
  3. Unger ED, Dubin RF, Deo R, et al. Association of chronic kidney disease with abnormal cardiac mechanics and adverse outcomes in patients with heart failure and preserved ejection fraction. Eur J Heart Fail 2016;18:103-12. https://doi.org/10.1002/ejhf.445
  4. Lofman I, Szummer K, Dahlstrom U, Jernberg T, Lund LH. Associations with and prognostic impact of chronic kidney disease in heart failure with preserved, mid-range, and reduced ejection fraction. Eur J Heart Fail 2017;19:1606-14. https://doi.org/10.1002/ejhf.821
  5. Marx N, Floege J. Cardiovascular disease in patients with chronic kidney disease. Herz 2021;46:205.
  6. Port FK, Wolfe RA, Mauger EA, Berling DP, Jiang K. Comparison of survival probabilities for dialysis patients vs cadaveric renal transplant recipients. JAMA 1993;270:1339-43. https://doi.org/10.1001/jama.1993.03510110079036
  7. Ojo AO, Port FK, Wolfe RA, Mauger EA, Williams L, Berling DP. Comparative mortality risks of chronic dialysis and cadaveric transplantation in black end-stage renal disease patients. Am J Kidney Dis 1994;24:59-64. https://doi.org/10.1016/S0272-6386(12)80160-0
  8. Tonelli M, Wiebe N, Knoll G, et al. Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am J Transplant 2011;11:2093-109. https://doi.org/10.1111/j.1600-6143.2011.03686.x
  9. Hawwa N, Shrestha K, Hammadah M, Yeo PS, Fatica R, Tang WH. Reverse remodeling and prognosis following kidney transplantation in contemporary patients with cardiac dysfunction. J Am Coll Cardiol 2015;66:1779-87. https://doi.org/10.1016/j.jacc.2015.08.023
  10. Dumesnil JG, Shoucri RM. Effect of the geometry of the left ventricle on the calculation of ejection fraction. Circulation 1982;65:91-8. https://doi.org/10.1161/01.CIR.65.1.91
  11. Krayenbuehl HP, Hess OM, Ritter M, Monrad ES, Hoppeler H. Left ventricular systolic function in aortic stenosis. Eur Heart J 1988;9 Suppl E:19-23. https://doi.org/10.1093/eurheartj/9.suppl_E.19
  12. Ross J Jr. Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog Cardiovasc Dis 1976;18:255-64. https://doi.org/10.1016/0033-0620(76)90021-9
  13. Gorcsan J 3rd, Tanaka H. Echocardiographic assessment of myocardial strain. J Am Coll Cardiol 2011;58:1401-13. https://doi.org/10.1016/j.jacc.2011.06.038
  14. Farsalinos KE, Daraban AM, unlu S, Thomas JD, Badano LP, Voigt JU. Head-to-head comparison of global longitudinal strain measurements among nine different vendors: the EACVI/ASE inter-vendor comparison study. J Am Soc Echocardiogr 2015;28:1171-81. https://doi.org/10.1016/j.echo.2015.06.011
  15. Mirea O, Pagourelias ED, Duchenne J, et al. Variability and reproducibility of segmental longitudinal strain measurement: a report from the EACVI-ASE strain standardization task force. JACC Cardiovasc Imaging 2018;11:15-24. https://doi.org/10.1016/j.jcmg.2017.01.027
  16. Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005;18:1440-63. https://doi.org/10.1016/j.echo.2005.10.005
  17. Kraigher-Krainer E, Shah AM, Gupta DK, et al. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J Am Coll Cardiol 2014;63:447-56. https://doi.org/10.1016/j.jacc.2013.09.052
  18. Lentine KL, Schnitzler MA, Abbott KC, et al. De novo congestive heart failure after kidney transplantation: a common condition with poor prognostic implications. Am J Kidney Dis 2005;46:720-33. https://doi.org/10.1053/j.ajkd.2005.06.019
  19. Wali RK, Wang GS, Gottlieb SS, et al. Effect of kidney transplantation on left ventricular systolic dysfunction and congestive heart failure in patients with end-stage renal disease. J Am Coll Cardiol 2005;45:1051-60. https://doi.org/10.1016/j.jacc.2004.11.061
  20. Rasic S, Kulenovic I, Haracic A, Catovic A. Left ventricular hypertrophy and risk factors for its development in uraemic patients. Bosn J Basic Med Sci 2004;4:34-40. https://doi.org/10.17305/bjbms.2004.3458
  21. Kramann R, Erpenbeck J, Schneider RK, et al. Speckle tracking echocardiography detects uremic cardiomyopathy early and predicts cardiovascular mortality in ESRD. J Am Soc Nephrol 2014;25:2351-65. https://doi.org/10.1681/ASN.2013070734
  22. Lopez B, Gonzalez A, Hermida N, Laviades C, Diez J. Myocardial fibrosis in chronic kidney disease: potential benefits of torasemide. Kidney Int Suppl 2008;74:S19-23. https://doi.org/10.1038/ki.2008.512
  23. Zoccali C, Moissl U, Chazot C, et al. Chronic fluid overload and mortality in ESRD. J Am Soc Nephrol 2017;28:2491-7. https://doi.org/10.1681/ASN.2016121341
  24. Alhaj E, Alhaj N, Rahman I, Niazi TO, Berkowitz R, Klapholz M. Uremic cardiomyopathy: an underdiagnosed disease. Congest Heart Fail 2013;19:E40-5. https://doi.org/10.1111/chf.12030
  25. Vlahakos DV, Hahalis G, Vassilakos P, Marathias KP, Geroulanos S. Relationship between left ventricular hypertrophy and plasma renin activity in chronic hemodialysis patients. J Am Soc Nephrol 1997;8:1764-70. https://doi.org/10.1681/ASN.V8111764
  26. Sato A, Funder JW, Saruta T. Involvement of aldosterone in left ventricular hypertrophy of patients with end-stage renal failure treated with hemodialysis. Am J Hypertens 1999;12:867-73. https://doi.org/10.1016/S0895-7061(99)00066-7
  27. Xue C, Yang B, Zhou C, et al. Fibroblast growth factor 23 predicts all-cause mortality in a dose-response fashion in pre-dialysis patients with chronic kidney disease. Am J Nephrol 2017;45:149-59. https://doi.org/10.1159/000454959
  28. Mirza MA, Larsson A, Melhus H, Lind L, Larsson TE. Serum intact FGF23 associate with left ventricular mass, hypertrophy and geometry in an elderly population. Atherosclerosis 2009;207:546-51. https://doi.org/10.1016/j.atherosclerosis.2009.05.013
  29. Rakhit DJ, Zhang XH, Leano R, Armstrong KA, Isbel NM, Marwick TH. Prognostic role of subclinical left ventricular abnormalities and impact of transplantation in chronic kidney disease. Am Heart J 2007;153:656-64. https://doi.org/10.1016/j.ahj.2007.01.028