과제정보
This study was funded by the National Natural Science Foundation of China (Grant No. 31800049); the Natural Science Foundation of Higher Education in Anhui Province (Grant Nos. KJ2021ZD0113 & 2022AH052156 & 2022AH052166); the Program for Young Outstanding Talents in Anhui Province (Grant No. gxyqZD2022071), and the Provincial Scientific Research Platform Open Project of Fuyang Normal University (Grant No. FSKFKT010).
참고문헌
- Jenkins DJ, Kendall CW, Augustin LS, Franceschi S, Hamidi M, Marchie A, et al. 2002. Glycemic index: overview of implications in health and disease. AM. J. Clin. Nutr. 76: 266-273. https://doi.org/10.1093/ajcn/76/1.266S
- Ercili Cura D, Lantto R, Lille M, Andberg M, Kruus K, Buchert J. 2009. Laccase-aided protein modification: effects on the structural properties of acidified sodium caseinate gels. Int. Dairy J. 19: 737-745. https://doi.org/10.1016/j.idairyj.2009.06.007
- Backes E, Kato CG, Correa RCG, Peralta Muniz Moreira RDF, Peralta RA, Barros L, et al. 2021. Laccases in food processing: current status, bottlenecks and perspectives. Trend Food. Sci. Technol. 115: 445-460. https://doi.org/10.1016/j.tifs.2021.06.052
- Fu BX. 2008. Asian noodles: history, classification, raw materials, and processing. Food Res. Int. 41: 888-902. https://doi.org/10.1016/j.foodres.2007.11.007
- Ludwig DS. 2002. The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 287: 2414-2423. https://doi.org/10.1001/jama.287.18.2414
- Liu FY, Yang Z, Guo XN, Xing JJ, Zhu KX. 2021. Influence of protein type, content and polymerization on in vitro starch digestibility of sorghum noodles. Food Res. Int. 142: 110199.
- Livesey G, Taylor R, Hulshof T, Howlett J. 2008. Glycemic response and health--a systematic review and meta-analysis: relations between dietary glycemic properties and health outcomes. Am. J. Clin. Nutr. 87: 258-268. https://doi.org/10.1093/ajcn/87.1.258S
- Gomez M, Gutkoski LC, Bravo-Nunez A. 2020. Understanding whole-wheat flour and its effect in breads: a review. Compr. Rev. Food Sci. Saf. 19: 3241-3265. https://doi.org/10.1111/1541-4337.12625
- Ma S, Wang Z, Guo X, Wang F, Huang J, Sun B, Wang X. 2021. Sourdough improves the quality of whole-wheat flour products: mechanisms and challenges-A review. Food Chem. 360: 30038.
- Lin S, Gao J, Jin X, Wang Y, Dong Z, Ying J, Zhou W. 2020. Whole-wheat flour particle size influences dough properties, bread structure and in vitro starch digestibility. Food. Funct. 11: 3610-3620. https://doi.org/10.1039/C9FO02587A
- Cardone G, D'Incecco P, Pagani MA, Marti A. 2020. Sprouting improves the bread-making performance of whole wheat flour (Triticum aestivum L.). J. Sci. Food Agric. 100: 2453-2459. https://doi.org/10.1002/jsfa.10264
- Guo XN, Wu SH, Zhu KX. 2020. Effect of superheated steam treatment on quality characteristics of whole wheat flour and storage stability of semi-dried whole wheat noodle. Food. Chem. 322: 126738.
- Jia-Xuan F, Xiao-Na G, Ke-Xue Z. 2022. Impact of laccase-induced protein cross-linking on the in vitro starch digestion of black highland barley noodles. J. Food. Hydrocolloids 124: 107298.
- Wee MSM, Jeyakumar Henry C. 2019. Effects of transglutaminase on the protein network and in vitro starch digestibility of Asian wheat noodles. Foods 8: 607.
- Bellido GG, Hatcher DW. 2011. Effects of a cross-linking enzyme on the protein composition, mechanical properties, and microstructure of Chinese-style noodles. Food. Chem. 125: 813-822. https://doi.org/10.1016/j.foodchem.2010.08.008
- Flander L, Holopainen U, Kruus K, Buchert J. 2011. Effects of tyrosinase and laccase on oat proteins and quality parameters of glutenfree oat breads. J. Agric. Food. Chem. 59: 8385-8390. https://doi.org/10.1021/jf200872r
- Kudanga T, Nyanhongo GS, Guebitz GM, Burton S. 2011. Potential applications of laccase-mediated coupling and grafting reactions: a review. Enzyme. Microb. Technol. 48: 195-208. https://doi.org/10.1016/j.enzmictec.2010.11.007
- Merete F, Otte J, Qvist KB. 1998. Cross-linking of whey proteins by enzymatic oxidation. J. Agric. Food Chem. 46: 1326-1333. https://doi.org/10.1021/jf970743c
- Wang J, Chang F, Tang X, Li W, Yin Q, Yang Y, Hu Y. 2020. Bacterial laccase of Anoxybacillus ayderensis SK3-4 from hot springs showing potential for industrial dye decolorization. Ann. Microbiol. 70: 51.
- Rombouts I, Jansens KJA, Lagrain B, Delcour JA, Zhu KX. 2014. The impact of salt and alkali on gluten polymerization and quality of fresh wheat noodles. J. Cereal. Sci. 60: 507-513. https://doi.org/10.1016/j.jcs.2014.09.003
- El Khoury D, Balfour-Ducharme S, Joye IJ. 2018. A review on the gluten-free diet: technological and nutritional challenges. Nutrients 10: 1410.
- Molina MA, Cazzaniga A, Milde LB, Sgroppo SC, Zapata PD, Fonseca MI. 2023. Purification and characterization of a fungal laccase expressed in Kluyveromyces lactis suitable for baking. J. Food Sci. 88: 1365-1377. https://doi.org/10.1111/1750-3841.16497
- Figueroa-Espinoza MC, Morel MH, Rouau X. 1998. Effect of lysine, tyrosine,, cysteine, and glutathione on the oxidative crosslinking of Feruloylated Arabinoxylans by a fungal laccase. J. Agric. Food Chem. 46: 2583-2589. https://doi.org/10.1021/jf970977w
- Brijwani K, Rigdon A, Vadlani PV. 2010. Fungal laccases: production, function, and applications in food processing. Enzyme Res. 2010: 149748.
- Kan L, Oliviero T, Verkerk R, Fogliano V, Capuano E. 2020. Interaction of bread and berry polyphenols affects starch digestibility and polyphenols bio-accessibility. J. Funct. Foods 68: doi:10.1016/j.jff.2020.103924.
- Idehen E, Tang Y, Sang S. 2017. Bioactive phytochemicals in barley. J. Food. Drug. Anal. 25: 148-161. https://doi.org/10.1016/j.jfda.2016.08.002
- Gimenez-Bastida JA, Piskula M, Zielinski H. 2015. Recent advances in development of gluten-free buckwheat products. Trends Food Sci. Tech. 44: 58-65. https://doi.org/10.1016/j.tifs.2015.02.013
- Onyango C, Mutungi C, Unbehend G, Lindhauer MG. 2011. Rheological and textural properties of sorghum-based formulations modified with variable amounts of native or pregelatinised cassava starch. LWT-Food Sci. Technol. 44: 687-693. https://doi.org/10.1016/j.lwt.2010.08.019
- Holtekjolen AK, Baevre AB, Rodbotten M, Berg H, Knutsen SH. 2008. Antioxidant properties and sensory profiles of breads containing barley flour. Food. Chem. 110: 414-421. https://doi.org/10.1016/j.foodchem.2008.02.054
- Fang ZM, Li TL, Chang F, Zhou P, Fang W, Hong YZ, et al. 2012. A new marine bacterial laccase with chloride-enhancing, alkali alkaline-dependent activity and dye decolorization ability. Bioresour. Technol. 111: 36-41. https://doi.org/10.1016/j.biortech.2012.01.172
- Bonet A, Rosell CM, Perez-Munuera I, Hernando I. 2007. Rebuilding gluten network of damaged wheat by means of glucose oxidase treatmen. J. Sci. Food Agric. 87: 1301-1307. https://doi.org/10.1002/jsfa.2846
- Wagner M, Morel MH, Bonicel J, Cuq B. 2011. Mechanisms of heat-mediated aggregation of wheat gluten protein upon pasta processing. J. Sci. Food. Agric. 59: 3146-3154. https://doi.org/10.1021/jf104341w
- Beveridge T, Toma S J, Nakai S D. 1974. Determination of SH- and SS-groups in some food proteins using Ellman's reagent. J. Food Sci. 39: 49-51. https://doi.org/10.1111/j.1365-2621.1974.tb00984.x
- Kohler P, Belitz H D, Wieser H. 1991. Disulphide bonds in wheat gluten: isolation of a cystine peptide from glutenin. Z. Lebensm. Unters. Forsch. 192: 234-239. https://doi.org/10.1007/BF01202885
- Cai X, Hong Y, Gu Z, Zhang Y. 2011. The effect of electrostatic interactions on pasting properties of potato starch/xanthan gum combinations. Food Res. Int. 44: 3079-3086. https://doi.org/10.1016/j.foodres.2011.10.013
- Manhivi VE, Amonsou EO, Kudanga T. 2018. Laccase-mediated crosslinking of gluten-free amadumbe flour improves rheological properties. Food. Chem. 264: 157-163. https://doi.org/10.1016/j.foodchem.2018.05.017
- Flander L, Rouau X, Morel MH, Autio K, Seppanen-Laakso T, Kruus K, et al. 2008. Effects of laccase and xylanase on the chemical and rheological properties of oat and wheat doughs. J. Agric. Food Chem. 56: 5732-5742. https://doi.org/10.1021/jf800264a
- Janusz G, Pawlik A, Swiderska-Burek U, Polak J, Sulej J, Jarosz-Wilkolazka A, et al. 2020. Laccase properties, physiological functions, and evolution. Int. J. Mol. Sci. 21: 966.
- He YJ, Guo JY, Ren GY, Cui GT, Han SH, Liu JX. 2020. Effects of konjac glucomannan on the water distribution of frozen dough and corresponding steamed bread quality. Food Chem. 330: 127243.
- Sato ACK, Perrechil FA, Costa AAS, Santana RC, Cunha RL. 2015. Cross-linking proteins by laccase: effects on the droplet size and rheology of emulsions stabilized by sodium caseinate. Food Res. Int. 75: 244-251. https://doi.org/10.1016/j.foodres.2015.06.010
- Selinheimo E, Kruus K, Buchert J, Hopia A, Autio K. 2006. Effects of laccase, xylanase and their combination on the rheological properties of wheat doughs. J. Cereal Sci. 43: 152-159. https://doi.org/10.1016/j.jcs.2005.08.007
- Labat E, Morel MH, Rouau X. 2000. Effects of laccase and ferulic acid on wheat flour doughs. Cereal Chem. 77: 823-828. https://doi.org/10.1094/CCHEM.2000.77.6.823
- Joye IJ, Lagrain B, Delcour JA. 2009. Use of chemical redox agents and exogenous enzymes to modify the protein network during breadmaking - A review. J. Cereal Sci. 50: 11-21. https://doi.org/10.1016/j.jcs.2009.04.001
- Patel SKS, Gupta RK, Kim SY, Kim IW, Kalia VC, Lee JK. 2021. Rhus vernicifera laccase immobilization on magnetic nanoparticles to improve stability and its potential application in bisphenol A degradation. Indian. J. Microbiol. 61: 45-54. https://doi.org/10.1007/s12088-020-00912-4
- Agrawal K, Chaturvedi V, Verma P. 2018. Fungal laccase discovered but yet undiscovered. Bioresour. Bioprocess. 5. doi:10.1186/s40643-018-0190-z.
- Guan ZB, Luo Q, Wang HR, Chen Y, Liao XR. 2018. Bacterial laccases: promising biological green tools for industrial applications. Cell. Mol. Life. Sci. 75: 3569-3592. https://doi.org/10.1007/s00018-018-2883-z
- Tonin F, Melis R, Cordes A, Sanchez-Amat A, Pollegioni L, Rosini E. 2016. Comparison of different microbial laccases as tools for industrial uses. N. Biotechnol. 33: 387-398. https://doi.org/10.1016/j.nbt.2016.01.007
- Canas AI, Camarero S. 2010. Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol. Adv. 28: 694-705. https://doi.org/10.1016/j.biotechadv.2010.05.002
- Hu XH, Cheng L, Hong Y, Li ZF, Li CM, Gu ZB. 2022. Impact of celluloses and pectins restrictions on gluten development and water distribution in potato-wheat flour dough. Int. J. Biol. Macromol. 206: 534-542. https://doi.org/10.1016/j.ijbiomac.2022.02.150
- Ayala-Solo F, Serna-Saldivar S, Welti-Chanes J. 2017. Effect of arabinoxylans and laccase on batter rheology and quality of yeastleavened gluten-free breads. J. Cereal Sci. 73: 10-17. https://doi.org/10.1016/j.jcs.2016.11.003
- Nino-Medina G, Gutierrez-Soto G, Urias-Orona V, Hernandez-Luna CE. 2017. Effect of laccase from Trametes maxima CU1 on physicochemical quality of bread. Cogent Food Agric. 3: 1328762.