DOI QR코드

DOI QR Code

Benefits of Soybean in the Era of Precision Medicine: A Review of Clinical Evidence

  • Jung Hyun Kang (Department of Food and Nutrition, Gyeongsang National University) ;
  • Zigang Dong (Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University) ;
  • Seung Ho Shin (Department of Food and Nutrition, Gyeongsang National University)
  • Received : 2023.08.11
  • Accepted : 2023.08.21
  • Published : 2023.12.28

Abstract

Soybean (Glycine max) is an important ingredient of cuisines worldwide. While there is a wealth of evidence that soybean could be a good source of macronutrients and phytochemicals with healthpromoting effects, concerns regarding adverse effects have been raised. In this work, we reviewed the current clinical evidence focusing on the benefits and risks of soybean ingredients. In breast, prostate, colorectal, ovarian, and lung cancer, epidemiological studies showed an inverse association between soybean food intake and cancer risks. Soybean intake was inversely correlated with risks of type 2 diabetes mellitus (T2DM), and soy isoflavones ameliorated osteoporosis and hot flashes. Notably, soybean was one of the dietary protein sources that may reduce the risk of breast cancer and T2DM. However, soybean had adverse effects on certain types of drug treatment and caused allergies. In sum, this work provides useful considerations for planning clinical soybean research and selecting dietary protein sources for human health.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 82002620, No. 81972839, NO. 8207112153, Z.D.), the Science and Technology Project of Henan Province (No. 212102310698, NO. 222102310102, Z.D.) and the National Research Foundation of Korea grant funded by the Korean government (MSIP) (NRF-2021R1C1C1013592).

References

  1. Khojely DM, Ibrahim SE, Sapey E, Han T. 2018. History, current status, and prospects of soybean production and research in sub-Saharan Africa. Crop. J. 6: 226-235. https://doi.org/10.1016/j.cj.2018.03.006
  2. Shin D, Jeong D. 2015. Korean traditional fermented soybean products: Jang. J. Ethnic Foods 2: 2-7. https://doi.org/10.1016/j.jef.2015.02.002
  3. Ibrahim SA. 2020. Microbiology and technology of fermented foods. J. Dairy Res. 87: 138-139. https://doi.org/10.1017/S0022029920000059
  4. Zhang P, Zhang P, Wu J, Tao D, Wu R. 2019. Effects of Leuconostoc mesenteroides on physicochemical and microbial succession characterization of soybean paste, Da-jiang. LWT 115: 108028.
  5. Tamang JP, Anupma A, Nakibapher Jones Shangpliang H. 2022. Ethno-microbiology of Tempe, an Indonesian fungal-fermented soybean food and Koji, a Japanese fungal starter culture. Curr. Opin. Food Sci. 48: 100912.
  6. Kharnaior P, Tamang JP. 2021. Bacterial and fungal communities and their predictive functional profiles in kinema, a naturally fermented soybean food of India, Nepal and Bhutan. Food Res. Int. 140: 110055.
  7. Yang H, Yang L, Zhang J, Li H, Tu Z, Wang X. 2019. Exploring functional core bacteria in fermentation of a traditional Chinese food, Aspergillus-type douchi. PLoS One 14: e0226965.
  8. Han DM, Chun BH, Feng T, Kim HM, Jeon CO. 2020. Dynamics of microbial communities and metabolites in ganjang, a traditional Korean fermented soy sauce, during fermentation. Food Microbiol. 92: 103591.
  9. Ghosh K, Kang HS, Hyun WB, Kim KP. 2018. High prevalence of Bacillus subtilis-infecting bacteriophages in soybean-based fermented foods and its detrimental effects on the process and quality of Cheonggukjang. Food Microbiol. 76: 196-203. https://doi.org/10.1016/j.fm.2018.05.007
  10. Kusumoto KI, Yamagata Y, Tazawa R, Kitagawa M, Kato T, Isobe K, et al. 2021. Japanese traditional Miso and Koji making. J. Fungi (Basel) 7: 579.
  11. Wang F, Meng J, Sun L, Weng Z, Fang Y, Tang X, et al. 2020. Study on the tofu quality evaluation method and the establishment of a model for suitable soybean varieties for Chinese traditional tofu processing. LWT 117: 108441.
  12. Ding J, Wen J, Wang J, Tian R, Yu L, Jiang L, et al. 2020. The physicochemical properties and gastrointestinal fate of oleosomes from non-heated and heated soymilk. Food Hydrocoll. 100: 105418.
  13. Messina M, Rogero MM, Fisberg M, Waitzberg D. 2017. Health impact of childhood and adolescent soy consumption. Nutr. Rev. 75: 500-515. https://doi.org/10.1093/nutrit/nux016
  14. Mortensen A, Kulling SE, Schwartz H, Rowland I, Ruefer CE, Rimbach G, et al. 2009. Analytical and compositional aspects of isoflavones in food and their biological effects. Mol. Nutr. Food Res. 53: S266-S309.
  15. Springmann M, Godfray HC, Rayner M, Scarborough P. 2016. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl. Acad. Sci. USA 113: 4146-4151. https://doi.org/10.1073/pnas.1523119113
  16. McClements DJ, Grossmann L. 2021. A brief review of the science behind the design of healthy and sustainable plant-based foods. NPJ Sci. Food 5: 17.
  17. Messina M, Sievenpiper JL, Williamson P, Kiel J, Erdman Jr JW. 2022. Perspective: soy-based meat and dairy alternatives, despite classification as ultra-processed foods, deliver high-quality nutrition on par with unprocessed or minimally processed animalbased counterparts. Adv. Nutr. 13: 726-738. https://doi.org/10.1093/advances/nmac026
  18. Blanco Mejia S, Messina M, Li SS, Viguiliouk E, Chiavaroli L, Khan TA, et al. 2019. A Meta-analysis of 46 studies identified by the FDA demonstrates that soy protein decreases circulating LDL and total cholesterol concentrations in adults. J. Nutr. 149: 968-981. https://doi.org/10.1093/jn/nxz020
  19. Food and Drug Administration. 2017. Food Labeling: Health Claims; Soy Protein and Coronary Heart Disease. Fed. Regist. 82: 50324-50346.
  20. Gu L, House SE, Prior RL, Fang N, Ronis MJ, Clarkson TB, et al. 2006. Metabolic phenotype of isoflavones differ among female rats, pigs, monkeys, and women. J. Nutr. 136: 1215-1221. https://doi.org/10.1093/jn/136.5.1215
  21. Roth GA, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. 2018. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392: 1736-1788. https://doi.org/10.1016/S0140-6736(18)32203-7
  22. Siegel RL, Miller KD, Wagle NS, Jemal A. 2023. Cancer statistics, 2023. CA Cancer J. Clin. 73: 17-48.
  23. Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. 2020. Epidemiology of type 2 diabetes-global burden of disease and forecasted trends. J. Epidemiol. Glob. Health 10: 107.
  24. Zimmet P, Alberti KG, Magliano DJ, Bennett PH. 2016. Diabetes mellitus statistics on prevalence and mortality: facts and fallacies. Nat. Rev. Endocrinol. 12: 616-622. https://doi.org/10.1038/nrendo.2016.105
  25. Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, et al. 1999. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 100: 1134-1146. https://doi.org/10.1161/01.CIR.100.10.1134
  26. Ji M-X, Yu Q. 2015. Primary osteoporosis in postmenopausal women. Chronic Dis. Transl. Med. 1: 9-13.
  27. Tang S, Du Y, Oh C, No J. 2020. Effects of soy foods in postmenopausal women: a focus on osteosarcopenia and obesity. J. Obes. Metab. Syndr. 29: 180.
  28. Chatterjee C, Gleddie S, Xiao CW. 2018. Soybean bioactive peptides and their functional properties. Nutrients 10: 1211.
  29. Mourtzinis S, Gaspar AP, Naeve SL, Conley SP. 2017. Planting date, maturity, and temperature effects on soybean seed yield and composition. Agron. J. 109: 2040-2049. https://doi.org/10.2134/agronj2017.05.0247
  30. Vasconcellos F, Woiciechowski A, Soccol V, Mantovani D, Soccol C. 2014. Antimicrobial and antioxidant properties of-conglycinin and glycinin from soy protein isolate. Int. J. Curr. Microbiol. Appl. Sci. 3: 144-157.
  31. Wang Y, Wang Z, Handa CL, Xu J. 2017. Effects of ultrasound pre-treatment on the structure of β-conglycinin and glycinin and the antioxidant activity of their hydrolysates. Food Chem. 218: 165-172. https://doi.org/10.1016/j.foodchem.2016.09.069
  32. Sitohy MZ, Mahgoub SA, Osman AO. 2012. In vitro and in situ antimicrobial action and mechanism of glycinin and its basic subunit. Int. J. Food Microbiol. 154: 19-29. https://doi.org/10.1016/j.ijfoodmicro.2011.12.004
  33. Xu J, Zhou A, Wang Z, Ai D. 2010. Effects of glycinin and β-conglycinin on integrity and immune responses of mouse intestinal epithelial cells. J. Anim. Plant Sci. 20: 170-174.
  34. Rebollo-Hernanz M, Bringe NA, Gonzalez de Mejia E. 2022. Selected soybean varieties regulate hepatic LDL-cholesterol homeostasis depending on their glycinin: β-conglycinin ratio. Antioxidants 12: 20.
  35. Wang W, Bringe NA, Berhow MA, Gonzalez de Mejia E. 2008. β-Conglycinins among sources of bioactives in hydrolysates of different soybean varieties that inhibit leukemia cells in vitro. J. Agric. Food Chem. 56: 4012-4020. https://doi.org/10.1021/jf8002009
  36. Lammi C, Zanoni C, Arnoldi A. 2015. Three peptides from soy glycinin modulate glucose metabolism in human hepatic HepG2 cells. Int. J. Mol. Sci. 16: 27362-27370. https://doi.org/10.3390/ijms161126029
  37. Ravindranath MH, Muthugounder S, Presser N, Viswanathan S. 2004. Anticancer therapeutic potential of soy isoflavone, genistein. Adv. Exp. Med. Biol. 546: 121-165. https://doi.org/10.1007/978-1-4757-4820-8_11
  38. Lee CH, Yang L, Xu JZ, Yeung SYV, Huang Y, Chen Z-Y. 2005. Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chem. 90: 735-741. https://doi.org/10.1016/j.foodchem.2004.04.034
  39. Hsiao Y-H, Ho C-T, Pan M-H. 2020. Bioavailability and health benefits of major isoflavone aglycones and their metabolites. J. Funct. Foods 74: 104164.
  40. Rizzo G, Baroni L. 2018. Soy, soy foods and their role in vegetarian diets. Nutrients 10: 43.
  41. Sui X, Zhang T, Jiang L. 2021. Soy protein: molecular structure revisited and recent advances in processing technologies. Ann. Rev. Food Sci. Technol. 12: 119-147. https://doi.org/10.1146/annurev-food-062220-104405
  42. Zhang T, Dou W, Zhang X, Zhao Y, Zhang Y, Jiang L, et al. 2021. The development history and recent updates on soy protein-based meat alternatives. Trends Food Sci. Technol. 109: 702-710. https://doi.org/10.1016/j.tifs.2021.01.060
  43. Rader AFB, Weinmuller M, Reichart F, Schumacher-Klinger A, Merzbach S, Gilon C, et al. 2018. Orally active peptides: is there a magic bullet? Angew. Chem. Int. Ed. Engl. 57: 14414-14438. https://doi.org/10.1002/anie.201807298
  44. Cruz-Casas DE, Aguilar CN, Ascacio-Valdes JA, Rodriguez-Herrera R, Chavez-Gonzalez ML, Flores-Gallegos AC. 2021. Enzymatic hydrolysis and microbial fermentation: the most favorable biotechnological methods for the release of bioactive peptides. Food Chem. 3: 100047.
  45. Jayachandran M, Xu B. 2019. An insight into the health benefits of fermented soy products. Food Chem. 271: 362-371. https://doi.org/10.1016/j.foodchem.2018.07.158
  46. Liu L, Chen X, Hao L, Zhang G, Jin Z, Li C, et al. 2022. Traditional fermented soybean products: processing, flavor formation, nutritional and biological activities. Crit. Rev. Food Sci. Nutr. 62: 1971-1989. https://doi.org/10.1080/10408398.2020.1848792
  47. Messina M, Nagata C, Wu AH. 2006. Estimated Asian adult soy protein and isoflavone intakes. Nutr. Cancer 55: 1-12. https://doi.org/10.1207/s15327914nc5501_1
  48. Dai Q, Shu XO, Jin F, Potter JD, Kushi LH, Teas J, et al. 2001. Population-based case-control study of soyfood intake and breast cancer risk in Shanghai. Br. J. Cancer 85: 372-378. https://doi.org/10.1054/bjoc.2001.1873
  49. Kim MK, Kim JH, Nam SJ, Ryu S, Kong G. 2008. Dietary intake of soy protein and tofu in association with breast cancer risk based on a case-control study. Nutr. Cancer 60: 568-576. https://doi.org/10.1080/01635580801966203
  50. Woo HW, Kim MK, Lee YH, Shin DH, Shin MH, Choi BY. 2018. Habitual consumption of soy protein and isoflavones and risk of metabolic syndrome in adults ≥ 40 years old: a prospective analysis of the Korean Multi-Rural Communities Cohort Study (MRCohort). Eur. J. Nutr. 58: 2835-2850.
  51. Ho SC, Woo JL, Leung SS, Sham AL, Lam TH, Janus ED. 2000. Intake of soy products is associated with better plasma lipid profiles in the Hong Kong Chinese population. J. Nutr. 130: 2590-2593. https://doi.org/10.1093/jn/130.10.2590
  52. Nagata C. 2000. Ecological study of the association between soy product intake and mortality from cancer and heart disease in Japan. Int. J. Epidemiol. 29: 832-836. https://doi.org/10.1093/ije/29.5.832
  53. Xiao CW. 2008. Health effects of soy protein and isoflavones in humans. J. Nutr. 138: 1244S-1249S. https://doi.org/10.1093/jn/138.6.1244S
  54. Wang H-j, Murphy PA. 1994. Isoflavone content in commercial soybean foods. J. Agric. Food Chem. 42: 1666-1673. https://doi.org/10.1021/jf00044a016
  55. Ceccarelli I, Bioletti L, Peparini S, Solomita E, Ricci C, Casini I, et al. 2022. Estrogens and phytoestrogens in body functions. Neurosci.Biobehav. Rev. 132: 648-663. https://doi.org/10.1016/j.neubiorev.2021.12.007
  56. Kostelac D, Rechkemmer G, Briviba K. 2003. Phytoestrogens modulate binding response of estrogen receptors alpha and beta to the estrogen response element. J. Agric. Food Chem. 51: 7632-7635. https://doi.org/10.1021/jf034427b
  57. Morito K, Hirose T, Kinjo J, Hirakawa T, Okawa M, Nohara T, et al. 2001. Interaction of phytoestrogens with estrogen receptors alpha and beta. Biol. Pharm. Bull. 24: 351-356. https://doi.org/10.1248/bpb.24.351
  58. Munro IC, Harwood M, Hlywka JJ, Stephen AM, Doull J, Flamm WG, et al. 2003. Soy isoflavones: a safety review. Nutr. Rev. 61: 1-33. https://doi.org/10.1301/nr.2003.janr.1-33
  59. Zaheer K, Humayoun Akhtar M. 2017. An updated review of dietary isoflavones: nutrition, processing, bioavailability and impacts on human health. Crit. Rev. Food Sci Nutr. 57: 1280-1293. https://doi.org/10.1080/10408398.2014.989958
  60. Ganesan K, Xu B. 2017. A Critical review on polyphenols and health benefits of black soybeans. Nutrients 9: 455.
  61. Joannou GE, Kelly GE, Reeder AY, Waring M, Nelson C. 1995. A urinary profile study of dietary phytoestrogens. The identification and mode of metabolism of new isoflavonoids. J. Steroid Biochem. Mol. Biol. 54: 167-184. https://doi.org/10.1016/0960-0760(95)00131-I
  62. Matthies A, Loh G, Blaut M, Braune A. 2012. Daidzein and genistein are converted to equol and 5-hydroxy-equol by human intestinal Slackia isoflavoniconvertens in gnotobiotic rats. J. Nutr. 142: 40-46. https://doi.org/10.3945/jn.111.148247
  63. Bhathena SJ, Velasquez MT. 2002. Beneficial role of dietary phytoestrogens in obesity and diabetes. Am. J. Clin. Nutr. 76: 1191-1201. https://doi.org/10.1093/ajcn/76.6.1191
  64. Pabich M, Materska M. 2019. Biological effect of soy isoflavones in the prevention of civilization diseases. Nutrients 11: 1660.
  65. Ishihara J, Sobue T, Yamamoto S, Sasaki S, Tsugane S, Group JS. 2003. Demographics, lifestyles, health characteristics, and dietary intake among dietary supplement users in Japan. Int. J. Epidemiol. 32: 546-553. https://doi.org/10.1093/ije/dyg091
  66. Somekawa Y, Chiguchi M, Ishibashi T, Aso T. 2001. Soy intake related to menopausal symptoms, serum lipids, and bone mineral density in postmenopausal Japanese women. Obstet. Gynecol. 97: 109-115.
  67. Nagata C, Takatsuka N, Kawakami N, Shimizu H. 2001. Soy product intake and premenopausal hysterectomy in a follow-up study of Japanese women. Eur. J. Clin. Nutr. 55: 773-777. https://doi.org/10.1038/sj.ejcn.1601223
  68. Yamamoto S, Sobue T, Sasaki S, Kobayashi M, Arai Y, Uehara M, et al. 2001. Validity and reproducibility of a self-administered foodfrequency questionnaire to assess isoflavone intake in a japanese population in comparison with dietary records and blood and urine isoflavones. J. Nutr. 131: 2741-2747. https://doi.org/10.1093/jn/131.10.2741
  69. Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N. 2000. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J. Nutr. 130:2243-2250. https://doi.org/10.1093/jn/130.9.2243
  70. Frankenfeld CL, Lampe JW, Shannon J, Gao DL, Ray RM, Prunty J, et al. 2004. Frequency of soy food consumption and serum isoflavone concentrations among Chinese women in Shanghai. Public Health Nutr. 7: 765-772. https://doi.org/10.1079/PHN2004614
  71. Liu Z, Li W, Sun J, Liu C, Zeng Q, Huang J, et al. 2004. Intake of soy foods and soy isoflavones by rural adult women in China. Asia Pac. J. Clin. Nutr. 13: 204-209.
  72. Chen Z, Zheng W, Custer LJ, Dai Q, Shu XO, Jin F, et al. 1999. Usual dietary consumption of soy foods and its correlation with the excretion rate of isoflavonoids in overnight urine samples among Chinese women in Shanghai. Nutr. Cancer 33: 82-87. https://doi.org/10.1080/01635589909514752
  73. Yang G, Shu XO, Jin F, Zhang X, Li HL, Li Q, et al. 2005. Longitudinal study of soy food intake and blood pressure among middleaged and elderly Chinese women. Am. J. Clin. Nutr. 81: 1012-1017. https://doi.org/10.1093/ajcn/81.5.1012
  74. Kim J, Kwon C. 2001. Estimated dietary isoflavone intake of Korean population based on National Nutrition Survey. Nutr. Res. 21: 947-953. https://doi.org/10.1016/S0271-5317(01)00310-4
  75. Lee MJ, Kim JH. 2007. Estimated dietary isoflavone intake among Korean adults. Nutr. Res. Pract. 1: 206-211. https://doi.org/10.4162/nrp.2007.1.3.206
  76. Jakes RW, Duffy SW, Ng FC, Gao F, Ng EH, Seow A, et al. 2002. Mammographic parenchymal patterns and self-reported soy intake in Singapore Chinese women. Cancer Epidemiol. Biomarkers Prev. 11: 608-613.
  77. de Kleijn MJ, van der Schouw YT, Wilson PW, Adlercreutz H, Mazur W, Grobbee DE, et al. 2001. Intake of dietary phytoestrogens is low in postmenopausal women in the United States: the Framingham study(1-4). J. Nutr. 131: 1826-1832. https://doi.org/10.1093/jn/131.6.1826
  78. Horn-Ross PL, John EM, Lee M, Stewart SL, Koo J, Sakoda LC, et al. 2001. Phytoestrogen consumption and breast cancer risk in a multiethnic population: the Bay Area Breast Cancer Study. Am. J. Epidemiol. 154: 434-441. https://doi.org/10.1093/aje/154.5.434
  79. Messina M. 2016. Soy and health update: evaluation of the clinical and epidemiologic literature. Nutrients 8: 754.
  80. Blasbalg TL, Hibbeln JR, Ramsden CE, Majchrzak SF, Rawlings RR. 2011. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am. J. Clin. Nutr. 93: 950-962. https://doi.org/10.3945/ajcn.110.006643
  81. Nachvak SM, Moradi S, Anjom-Shoae J, Rahmani J, Nasiri M, Maleki V, et al. 2019. Soy, soy isoflavones, and protein intake in relation to mortality from all causes, cancers, and cardiovascular diseases: a systematic review and dose-response meta-analysis of prospective cohort studies. J. Acad. Nutr. Diet 119: 1483-1500.e.17. https://doi.org/10.1016/j.jand.2019.04.011
  82. Baena Ruiz R, Salinas Hernandez P. 2016. Cancer chemoprevention by dietary phytochemicals: epidemiological evidence. Maturitas 94: 13-19. https://doi.org/10.1016/j.maturitas.2016.08.004
  83. Rosen PP, Menendez-Botet CJ, Nisselbaum JS, Urban JA, Mike V, Fracchia A, et al. 1975. Pathological review of breast lesions analyzed for estrogen receptor protein. Cancer Res. 35: 3187-3194.
  84. Dong JY, Qin LQ. 2011. Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies. Breast Cancer Res. Treat. 125: 315-323. https://doi.org/10.1007/s10549-010-1270-8
  85. Chen M, Rao Y, Zheng Y, Wei S, Li Y, Guo T, et al. 2014. Association between soy isoflavone intake and breast cancer risk for pre- and post-menopausal women: a meta-analysis of epidemiological studies. PLoS One 9: e89288.
  86. Wu YC, Zheng D, Sun JJ, Zou ZK, Ma ZL. 2015. Meta-analysis of studies on breast cancer risk and diet in Chinese women. Int. J. Clin. Exp. Med. 8: 73-85.
  87. Woo HD, Park S, Oh K, Kim HJ, Shin HR, Moon HK, et al. 2014. Diet and cancer risk in the Korean population: a meta- analysis. Asian Pac. J. Cancer Prev. 15: 8509-8519. https://doi.org/10.7314/APJCP.2014.15.19.8509
  88. Wei Y, Lv J, Guo Y, Bian Z, Gao M, Du H, et al. 2020. Soy intake and breast cancer risk: a prospective study of 300,000 Chinese women and a dose-response meta-analysis. Eur. J. Epidemiol. 35: 567-578. https://doi.org/10.1007/s10654-019-00585-4
  89. Yang J, Shen H, Mi M, Qin Y. 2023. Isoflavone consumption and risk of breast cancer: an updated systematic review with metaanalysis of observational studies. Nutrients 15: 2402.
  90. Ioannis Boutas, Adamantia Kontogeorgi, Constantine Dimitrakakis, Sophia N Kalantaridou. 2022. Soy isoflavones and breast cancer risk: a meta-analysis. In Vivo 36: 556-562. https://doi.org/10.21873/invivo.12737
  91. Tan MM, Ho WK, Yoon SY, Mariapun S, Hasan SN, Lee DS, et al. 2018. A case-control study of breast cancer risk factors in 7,663 women in Malaysia. PLoS One 13: e0203469.
  92. Qiu S, Jiang C. 2018. Soy and isoflavones consumption and breast cancer survival and recurrence: a systematic review and metaanalysis. Eur. J. Nutr. 58: 3079-3090.
  93. Kang X, Zhang Q, Wang S, Huang X, Jin S. 2010. Effect of soy isoflavones on breast cancer recurrence and death for patients receiving adjuvant endocrine therapy. CMAJ 182: 1857-1862. https://doi.org/10.1503/cmaj.091298
  94. Woo HD, Park KS, Ro J, Kim J. 2012. Differential influence of dietary soy intake on the risk of breast cancer recurrence related to HER2 status. Nutr. Cancer 64: 198-205. https://doi.org/10.1080/01635581.2012.635261
  95. Chi F, Wu R, Zeng YC, Xing R, Liu Y, Xu ZG. 2013. Post-diagnosis soy food intake and breast cancer survival: a meta-analysis of cohort studies. Asian Pac. J. Cancer Prev. 14: 2407-2412. https://doi.org/10.7314/APJCP.2013.14.4.2407
  96. Baglia ML, Zheng W, Li H, Yang G, Gao J, Gao YT, et al. 2016. The association of soy food consumption with the risk of subtype of breast cancers defined by hormone receptor and HER2 status. Int. J. Cancer 139: 742-748. https://doi.org/10.1002/ijc.30117
  97. Wu J, Zeng R, Huang J, Li X, Zhang J, Ho JC, et al. 2016. Dietary protein sources and incidence of breast cancer: a dose-response meta-analysis of prospective studies. Nutrients 8: 730.
  98. Zhao TT, Jin F, Li JG, Xu YY, Dong HT, Liu Q, et al. 2019. Dietary isoflavones or isoflavone-rich food intake and breast cancer risk: a meta-analysis of prospective cohort studies. Clin. Nutr. 38: 136-145. https://doi.org/10.1016/j.clnu.2017.12.006
  99. Wu AH, Yu MC, Tseng CC, Pike MC. 2008. Epidemiology of soy exposures and breast cancer risk. Br. J. Cancer 98: 9-14. https://doi.org/10.1038/sj.bjc.6604145
  100. Haas GP, Delongchamps N, Brawley OW, Wang CY, de la Roza G. 2008. The worldwide epidemiology of prostate cancer: perspectives from autopsy studies. Can. J. Urol. 15: 3866-3871.
  101. Applegate CC, Rowles JL, Ranard KM, Jeon S, Erdman JW. 2018. Soy consumption and the risk of prostate cancer: an updated systematic review and meta-analysis. Nutrients 10: 40.
  102. Dalais FS, Meliala A, Wattanapenpaiboon N, Frydenberg M, Suter DA, Thomson WK, et al. 2004. Effects of a diet rich in phytoestrogens on prostate-specific antigen and sex hormones in men diagnosed with prostate cancer. Urology 64: 510-515. https://doi.org/10.1016/j.urology.2004.04.009
  103. Pendleton JM, Tan WW, Anai S, Chang M, Hou W, Shiverick KT, et al. 2008. Phase II trial of isoflavone in prostate-specific antigen recurrent prostate cancer after previous local therapy. BMC Cancer 8: 132.
  104. Fleshner NE, Kapusta L, Donnelly B, Tanguay S, Chin J, Hersey K, et al. 2011. Progression from high-grade prostatic intraepithelial neoplasia to cancer: a randomized trial of combination vitamin-E, soy, and selenium. J. Clin. Oncol. 29: 2386-2390. https://doi.org/10.1200/JCO.2010.32.0994
  105. Bosland MC, Kato I, Zeleniuch-Jacquotte A, Schmoll J, Enk Rueter E, Melamed J, et al. 2013. Effect of soy protein isolate supplementation on biochemical recurrence of prostate cancer after radical prostatectomy: a randomized trial. JAMA 310: 170-178. https://doi.org/10.1001/jama.2013.7842
  106. Ko KP, Yeo Y, Yoon JH, Kim CS, Tokudome S, Ngoan LT, et al. 2018. Plasma phytoestrogens concentration and risk of colorectal cancer in two different Asian populations. Clin. Nutr. 37: 1675-1682. https://doi.org/10.1016/j.clnu.2017.07.014
  107. Tse G, Eslick GD. 2016. Soy and isoflavone consumption and risk of gastrointestinal cancer: a systematic review and meta-analysis. Eur. J. Nutr. 55: 63-73. https://doi.org/10.1007/s00394-014-0824-7
  108. Yan L, Spitznagel EL, Bosland MC. 2010. Soy consumption and colorectal cancer risk in humans: a meta-analysis. Cancer Epidemiol. Biomarkers Prev. 19: 148-158. https://doi.org/10.1158/1055-9965.EPI-09-0856
  109. Hua X, Yu L, You R, Yang Y, Liao J, Chen D, et al. 2016. Association among dietary flavonoids, flavonoid subclasses and ovarian cancer risk: a meta-analysis. PLoS One 11: e0151134.
  110. Qu XL, Fang Y, Zhang M, Zhang YZ. 2014. Phytoestrogen intake and risk of ovarian cancer: a meta- analysis of 10 observational studies. Asian Pac. J. Cancer Prev. 15: 9085-9091. https://doi.org/10.7314/APJCP.2014.15.21.9085
  111. Yang WS, Va P, Wong MY, Zhang HL, Xiang YB. 2011. Soy intake is associated with lower lung cancer risk: results from a metaanalysis of epidemiologic studies. Am. J. Clin. Nutr. 94: 1575-1583. https://doi.org/10.3945/ajcn.111.020966
  112. Wu SH, Liu Z. 2013. Soy food consumption and lung cancer risk: a meta-analysis using a common measure across studies. Nutr. Cancer 65: 625-632. https://doi.org/10.1080/01635581.2013.795983
  113. American Diabetes A. 2021. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2021. Diabetes Care 44: S15-S33. https://doi.org/10.2337/dc21-S002
  114. Li W, Ruan W, Peng Y, Wang D. 2018. Soy and the risk of type 2 diabetes mellitus: a systematic review and meta-analysis of observational studies. Diabetes Res. Clin. Pract. 137: 190-199. https://doi.org/10.1016/j.diabres.2018.01.010
  115. Pearce M, Fanidi A, Bishop TRP, Sharp SJ, Imamura F, Dietrich S, et al. 2021. Associations of total legume, pulse, and soy consumption with incident type 2 diabetes: federated meta-analysis of 27 studies from diverse world regions. J. Nutr. 151: 1231-1240. https://doi.org/10.1093/jn/nxaa447
  116. Tian S, Xu Q, Jiang R, Han T, Sun C, Na L. 2017. Dietary protein consumption and the risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. Nutrients 9: 982.
  117. Liu ZM, Chen YM, Ho SC. 2011. Effects of soy intake on glycemic control: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 93: 1092-1101. https://doi.org/10.3945/ajcn.110.007187
  118. Yang B, Chen Y, Xu T, Yu Y, Huang T, Hu X, et al. 2011. Systematic review and meta-analysis of soy products consumption in patients with type 2 diabetes mellitus. Asia Pac. J. Clin. Nutr. 20: 593-602.
  119. Kanis JA, Melton LJ, 3rd, Christiansen C, Johnston CC, Khaltaev N. 1994. The diagnosis of osteoporosis. J. Bone Miner. Res. 9: 1137-1141. https://doi.org/10.1002/jbmr.5650090802
  120. Lorentzon M, Cummings SR. 2015. Osteoporosis: the evolution of a diagnosis. J. Intern. Med. 277: 650-661. https://doi.org/10.1111/joim.12369
  121. Eastell R, Szulc P. 2017. Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol. 5: 908-923. https://doi.org/10.1016/S2213-8587(17)30184-5
  122. Nielsen TF, Ravn P, Bagger YZ, Warming L, Christiansen C. 2004. Pulsed estrogen therapy in prevention of postmenopausal osteoporosis. A 2-year randomized, double blind, placebo-controlled study. Osteoporos Int. 15: 168-174. https://doi.org/10.1007/s00198-003-1535-8
  123. Pouilles JM, Tremollieres F, Ribot C. 1995. Effect of menopause on femoral and vertebral bone loss. J. Bone Miner. Res. 10: 1531-1536. https://doi.org/10.1002/jbmr.5650101014
  124. Akhlaghi M, Ghasemi Nasab M, Riasatian M, Sadeghi F. 2019. Soy isoflavones prevent bone resorption and loss, a systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 60: 2327-2341.
  125. Kanadys W, Baranska A, Blaszczuk A, Polz-Dacewicz M, Drop B, Malm M, et al. 2021. Effects of soy isoflavones on biochemical markers of bone metabolism in postmenopausal women: a systematic review and meta-analysis of randomized controlled trials. Int. J. Environ. Res. Public Health 18: 5346.
  126. Avis NE, Crawford SL, Greendale G, Bromberger JT, Everson-Rose SA, Gold EB, et al. 2015. Duration of menopausal vasomotor symptoms over the menopause transition. JAMA Intern. Med. 175: 531-539. https://doi.org/10.1001/jamainternmed.2014.8063
  127. Adlercreutz H, Hamalainen E, Gorbach S, Goldin B. 1992. Dietary phyto-oestrogens and the menopause in Japan. Lancet 339: 1233.
  128. Taku K, Melby MK, Kronenberg F, Kurzer MS, Messina M. 2012. Extracted or synthesized soybean isoflavones reduce menopausal hot flash frequency and severity: systematic review and meta-analysis of randomized controlled trials. Menopause 19: 776-790. https://doi.org/10.1097/gme.0b013e3182410159
  129. James W Daily, Byoung-Seob Ko, Jina Ryuk, Meiling Liu, Weijun Zhang, Sunmin Park. 2019. Equol decreases hot flashes in postmenopausal women: a systematic review and meta-analysis of randomized clinical trials. J. Med. Food 22: 127-139. https://doi.org/10.1089/jmf.2018.4265
  130. Bode AM, Dong Z. 2015. Toxic phytochemicals and their potential risks for human cancer. Cancer Prev. Res. 8: 1-8. https://doi.org/10.1158/1940-6207.CAPR-14-0160
  131. Demers LM. 1994. Effects of Fadrozole (CGS 16949A) and Letrozole (CGS 20267) on the inhibition of aromatase activity in breast cancer patients. Breast Cancer Res. Treat. 30: 95-102. https://doi.org/10.1007/BF00682744
  132. van Duursen MB, Nijmeijer SM, de Morree ES, de Jong PC, van den Berg M. 2011. Genistein induces breast cancer-associated aromatase and stimulates estrogen-dependent tumor cell growth in in vitro breast cancer model. Toxicology 289: 67-73. https://doi.org/10.1016/j.tox.2011.07.005
  133. Ju YH, Doerge DR, Woodling KA, Hartman JA, Kwak J, Helferich WG. 2008. Dietary genistein negates the inhibitory effect of letrozole on the growth of aromatase-expressing estrogen-dependent human breast cancer cells (MCF-7Ca) in vivo. Carcinogenesis 29: 2162-2168. https://doi.org/10.1093/carcin/bgn161
  134. Florsheim EB, Sullivan ZA, Khoury-Hanold W, Medzhitov R. 2021. Food allergy as a biological food quality control system. Cell 184: 1440-1454. https://doi.org/10.1016/j.cell.2020.12.007
  135. Kay AB. 2000. Overview of 'allergy and allergic diseases: with a view to the future'. Br. Med. Bull. 56: 843-864. https://doi.org/10.1258/0007142001903481
  136. Aalberse RC, Akkerdaas J, van Ree R. 2001. Cross-reactivity of IgE antibodies to allergens. Allergy 56: 478-490. https://doi.org/10.1034/j.1398-9995.2001.056006478.x
  137. Cabanillas B, Jappe U, Novak N. 2018. Allergy to peanut, soybean, and other legumes: recent advances in allergen characterization, stability to processing and IgE cross-reactivity. Mol. Nutr. Food Res. 62. doi: 10.1002/mnfr.201700446. Epub 2017 Nov 3.
  138. Cox AL, Eigenmann PA, Sicherer SH. 2021. Clinical relevance of cross-reactivity in food allergy. J. Allergy Clin. Immunol. Pract. 9: 82-99. https://doi.org/10.1016/j.jaip.2020.09.030
  139. Sicherer SH, Sampson HA. 2006. 9. Food allergy. J. Allergy Clin. Immunol. 117: S470-475. https://doi.org/10.1016/j.jaci.2005.05.048
  140. Savage JH, Kaeding AJ, Matsui EC, Wood RA. 2010. The natural history of soy allergy. J. Allergy Clin. Immunol. 125: 683-686. https://doi.org/10.1016/j.jaci.2009.12.994
  141. Komata T, Soderstrom L, Borres MP, Tachimoto H, Ebisawa M. 2009. Usefulness of wheat and soybean specific IgE antibody titers for the diagnosis of food allergy. Allergol. Int. 58: 599-603. https://doi.org/10.2332/allergolint.09-OA-0096
  142. Cordle CT. 2004. Soy protein allergy: incidence and relative severity. J. Nutr. 134: 1213S-1219S. https://doi.org/10.1093/jn/134.5.1213S
  143. Wilson S, Blaschek K, de Mejia E. 2005. Allergenic proteins in soybean: processing and reduction of P34 allergenicity. Nutr. Rev. 63: 47-58. https://doi.org/10.1111/j.1753-4887.2005.tb00121.x
  144. Magishi N, Yuikawa N, Kobayashi M, Taniuchi S. 2017. Degradation and removal of soybean allergen in Japanese soy sauce. Mol. Med. Rep. 16: 2264-2268. https://doi.org/10.3892/mmr.2017.6815
  145. Quaas AM, Kono N, Mack WJ, Hodis HN, Felix JC, Paulson RJ, et al. 2013. Effect of isoflavone soy protein supplementation on endometrial thickness, hyperplasia, and endometrial cancer risk in postmenopausal women: a randomized controlled trial. Menopause 20: 840-844. https://doi.org/10.1097/GME.0b013e3182804353
  146. Hamilton-Reeves JM, Banerjee S, Banerjee SK, Holzbeierlein JM, Thrasher JB, Kambhampati S, et al. 2013. Short-term soy isoflavone intervention in patients with localized prostate cancer: a randomized, double-blind, placebo-controlled trial. PLoS One 8: e68331.
  147. Shike M, Doane AS, Russo L, Cabal R, Reis-Filho JS, Gerald W, et al. 2014. The effects of soy supplementation on gene expression in breast cancer: a randomized placebo-controlled study. J. Natl. Cancer Inst. 106: dju189.