DOI QR코드

DOI QR Code

Insights into Enzyme Reactions with Redox Cofactors in Biological Conversion of CO2

  • Du-Kyeong Kang (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Seung-Hwa Kim (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jung-Hoon Sohn (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Bong Hyun Sung (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2023.06.05
  • Accepted : 2023.06.12
  • Published : 2023.11.28

Abstract

Carbon dioxide (CO2) is the most abundant component of greenhouse gases (GHGs) and directly creates environmental issues such as global warming and climate change. Carbon capture and storage have been proposed mainly to solve the problem of increasing CO2 concentration in the atmosphere; however, more emphasis has recently been placed on its use. Among the many methods of using CO2, one of the key environmentally friendly technologies involves biologically converting CO2 into other organic substances such as biofuels, chemicals, and biomass via various metabolic pathways. Although an efficient biocatalyst for industrial applications has not yet been developed, biological CO2 conversion is the needed direction. To this end, this review briefly summarizes seven known natural CO2 fixation pathways according to carbon number and describes recent studies in which natural CO2 assimilation systems have been applied to heterogeneous in vivo and in vitro systems. In addition, studies on the production of methanol through the reduction of CO2 are introduced. The importance of redox cofactors, which are often overlooked in the CO2 assimilation reaction by enzymes, is presented; methods for their recycling are proposed. Although more research is needed, biological CO2 conversion will play an important role in reducing GHG emissions and producing useful substances in terms of resource cycling.

Keywords

Acknowledgement

This study was supported by National Research Foundation of Korea (NRF) grants (2022M3J5A1056169, 2021M3A9I5023254, 2019R1A2C1090726, and 2018M3A9H3024746), a National Research Council of Science & Technology grant (No. CAP20023-200) by the Korean government (MSIT), and the Research Initiative Program of KRIBB (KGM5402322).

References

  1. Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Pean C, Berger S, et al. 2021. IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
  2. Lindsey R, Dahlman L. 2023. Climate Change: Global Temperature. National Oceanic and Atmospheric Administration.
  3. Lindsey R. 2022. Climate Change: Atmospheric Carbon Dioxide. National Oceanic and Atmospheric Administration.
  4. Hoegh-Guldberg O, Jacob D, Taylor M, Bindi M, Brown S, Camilloni I, et al. 2018. Impacts of 1.5℃ Global Warming on Natural and Human Systems. IPCC Special Report.
  5. Larcombe AN, Papini MG, Chivers EK, Berry LJ, Lucas RM, Wyrwoll CS. 2021. Mouse lung structure and function after long-term exposure to an atmospheric carbon dioxide level predicted by climate change modeling. Environ. Health Perspect. 129: 17001.
  6. McLean MJ, Mouillot D, Goascoz N, Schlaich I, Auber A. 2019. Functional reorganization of marine fish nurseries under climate warming. Glob. Chang. Biol. 25: 660-674.
  7. Tabari H. 2020. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 10: 13768.
  8. Vats G, Mathur R. 2022. A net-zero emissions energy system in India by 2050: An exploration. J. Clean. Prod. 352: 131417.
  9. Chu S. 2009. Carbon capture and sequestration. Science 325: 1599.
  10. Zhang Y, Yu L, Cui K, Wang H, Fu T. 2023. Carbon capture and storage technology by steel-making slags: recent progress and future challenges. Chem. Eng. J. 455: 140552
  11. Vercelli S, Anderlucci J, Memoli R, Battisti N, Mabon L, Lombardi S. 2013. Informing people about CCS: a review of social research studies. Energy Procedia 37: 7464-7473.
  12. Al-Mamoori A, Krishnamurthy A, Rownaghi AA, Rezaei F. 2017. Carbon capture and utilization update. Energy Technol. 5: 834-849.
  13. Derrick JS, Loipersberger M, Chatterjee R, Iovan DA, Smith PT, Chakarawet K, et al. 2020. Metal-ligand cooperativity via exchange coupling promotes iron- catalyzed electrochemical CO2 reduction at low overpotentials. J. Am. Chem. Soc. 142: 20489-20501.
  14. Zhang X, Guo SX, Gandionco KA, Bond AM, Zhang J. 2020. Electrocatalytic carbon dioxide reduction: from fundamental principles to catalyst design. Mater. Today Adv. 7: 10074.
  15. Sahoo A, Chowdhury AH, Manirul Islam S, Bala T. 2022. Successful CO2 reduction under visible light photocatalysis using porous NiO nanoparticles, an atypical metal oxide. New J. Chem. 46: 10806-10813.
  16. D'Amario B, Perez C, Grelaud M, Pitta P, Krasakopoulou E, Ziveri P. 2020. Coccolithophore community response to ocean acidification and warming in the Eastern Mediterranean Sea: results from a mesocosm experiment. Sci. Rep. 10: 12637.
  17. Stitt M, Lunn J, Usadel B. 2010. Arabidopsis and primary photosynthetic metabolism - more than the icing on the cake. Plant J. 61: 1067-1091.
  18. Ragsdale SW, Pierce E. 2008. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta. 1784: 1873-1898.
  19. Claassens NJ, Bordanaba-Florit G, Cotton CAR, De Maria A, Finger-Bou M, Friedeheim L, et al. 2020. Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator. Metab. Eng. 62: 30-41.
  20. Modde K, Timm S, Florian A, Michl K, Fernie AR, Bauwe H. 2017. High serine:glyoxylate aminotransferase activity lowers leaf daytime serine levels, inducing the phosphoserine pathway in Arabidopsis. J. Exp. Bot. 68: 643-656.
  21. Xu Y, Ren J, Wang W, Zeng AP. 2022. Improvement of glycine biosynthesis from one-carbon compounds and ammonia catalyzed by the glycine cleavage system in vitro. Eng. Life Sci. 22: 40-53.
  22. Gonzalez de la Cruz J, Machens F, Messerschmidt K, Bar-Even A. 2019. Core catalysis of the reductive glycine pathway demonstrated in yeast. ACS Synth. Biol. 8: 911-917.
  23. Hong Y, Arbter P, Wang W, Rojas LN, Zeng AP. 2021. Introduction of glycine synthase enables uptake of exogenous formate and strongly impacts the metabolism in Clostridium pasteurianum. Biotechnol. Bioeng. 118: 1366-1380.
  24. Sanchez-Andrea I, Guedes IA, Hornung B, Boeren S, Lawson CE, Sousa DZ, et al. 2020. The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans. Nat. Commun. 11: 5090.
  25. Zarzycki J, Brecht V, Muller M, Fuchs G. 2009. Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proc. Natl. Acad. Sci. USA 106: 21317-21322.
  26. Huber H, Gallenberger M, Jahn U, Eylert E, Berg IA, Kockelkorn D, et al. 2008. A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis. Proc. Natl. Acad. Sci. USA 105: 7851-7856.
  27. Hawkins AS, Han Y, Bennett RK, Adams MW, Kelly RM. 2013. Role of 4-hydroxybutyrate-CoA synthetase in the CO2 fixation cycle in thermoacidophilic archaea. J. Biol. Chem. 288: 4012-4022.
  28. Loder AJ, Han Y, Hawkins AB, Lian H, Lipscomb GL, Schut GJ, et al. 2016. Reaction kinetic analysis of the 3-hydroxypropionate/4-hydroxybutyrate CO2 fixation cycle in extremely thermoacidophilic archaea. Metab. Eng. 38: 446-463.
  29. Steffens L, Pettinato E, Steiner TM, Mall A, Konig S, Eisenreich W, et al. 2021. High CO2 levels drive the TCA cycle backwards towards autotrophy. Nature 592: 784-788.
  30. Cheng HT, Lo SC, Huang CC, Ho TY, Yang YT. 2019. Detailed profiling of carbon fixation of in silico synthetic autotrophy with reductive tricarboxylic acid cycle and Calvin-Benson-Bassham cycle in Esherichia coli using hydrogen as an energy source. Synth. Syst. Biotechnol. 4: 165-172.
  31. Bar-Even A, Noor E, Lewis NE, Milo R. 2010. Design and analysis of synthetic carbon fixation pathways. Proc. Natl. Acad. Sci. USA 107: 8889-8894.
  32. Kerfeld CA. 2016. Rewiring Escherichia coli for carbon-dioxide fixation. Nat. Biotechnol. 34: 1035-1036.
  33. Antonovsky N, Gleizer S, Noor E, Zohar Y, Herz E, Barenholz U, et al. 2016. Sugar synthesis from CO2 in Escherichia coli. Cell 166: 115-125.
  34. Gleizer S, Ben-Nissan R, Bar-On YM, Antonovsky N, Noor E, Zohar Y, et al. 2019. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179: 1255-1263 e1212.
  35. Lee SY, Kim YS, Shin W-R, Yu J, Lee J, Lee S, et al. 2020. Non-photosynthetic CO2 bio-mitigation by Escherichia coli harbouring CBB genes. Green Chem. 22: 6889-6896.
  36. Flamholz AI, Dugan E, Blikstad C, Gleizer S, Ben-Nissan R, Amram S, et al. 2020. Functional reconstitution of a bacterial CO2 concentrating mechanism in Escherichia coli. Elife 9: 59882.
  37. Woolston BM, King JR, Reiter M, Van Hove B, Stephanopoulos G. 2018. Improving formaldehyde consumption drives methanol assimilation in engineered E. coli. Nat. Commun. 9: 2387.
  38. He H, Edlich-Muth C, Lindner SN, Bar-Even A. 2018. Ribulose monophosphate shunt provides nearly all biomass and energy required for growth of E. coli. ACS Synth. Biol. 7: 1601-1611.
  39. Keller P, Noor E, Meyer F, Reiter MA, Anastassov S, Kiefer P, et al. 2020. Methanol-dependent Escherichia coli strains with a complete ribulose monophosphate cycle. Nat. Commun. 11: 5403.
  40. Kim S, Lindner SN, Aslan S, Yishai O, Wenk S, Schann K, et al. 2020. Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat. Chem. Biol. 16: 538-545.
  41. Yu H, Liao JC. 2018. A modified serine cycle in Escherichia coli coverts methanol and CO2 to two-carbon compounds. Nat. Commun. 9: 3992.
  42. He H, Hoper R, Dodenhoft M, Marliere P, Bar-Even A. 2020. An optimized methanol assimilation pathway relying on promiscuous formaldehyde-condensing aldolases in E. coli. Metab. Eng. 60: 1-13.
  43. Jo BH, Kim IG, Seo JH, Kang DG, Cha HJ. 2013. Engineered Escherichia coli with periplasmic carbonic anhydrase as a biocatalyst for CO2 sequestration. Appl. Environ. Microbiol. 79: 6697-6705.
  44. Kato A, Takatani N, Ikeda K, Maeda SI, Omata T. 2017. Removal of the product from the culture medium strongly enhances free fatty acid production by genetically engineered Synechococcus elongatus. Biotechnol. Biofuels 10: 141.
  45. Yunus IS, Wichmann J, Wordenweber R, Lauersen KJ, Kruse O, Jones PR. 2018. Synthetic metabolic pathways for photobiological conversion of CO2 into hydrocarbon fuel. Metab. Eng. 49: 201-211.
  46. Yunus IS, Jones PR. 2018. Photosynthesis-dependent biosynthesis of medium chain-length fatty acids and alcohols. Metab. Eng. 49: 59-68.
  47. Choe H, Joo JC, Cho DH, Kim MH, Lee SH, Jung KD, et al. 2014. Efficient CO2-reducing activity of NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA for formate production from CO2 gas. PLoS One 9: e103111.
  48. Aslan AS, Valjakka J, Ruupunen J, Yildirim D, Turner NJ, Turunen O, et al. 2017. Chaetomium thermophilum formate dehydrogenase has high activity in the reduction of hydrogen carbonate (HCO3-) to formate. Protein Eng. Des. Sel. 30: 47-55.
  49. Boldt A, Ansorge-Schumacher MB. 2020. Formate dehydrogenase from Rhodococcus jostii (RjFDH) - A high-performance tool for NADH regeneration. Adv. Synth. Catal. 362: 4109-4118.
  50. Singh RK, Singh R, Sivakumar D, Kondaveeti S, Kim T, Li J, et al. 2018. Insights into cell-free conversion of CO2 to chemicals by a multienzyme cascade reaction. ACS Catal. 8: 11085-11093.
  51. Kuk SK, Gopinath K, Singh RK, Kim TD, Lee Y, Choi WS, et al. 2019. NADH-free electroenzymatic reduction of CO2 by conductive hydrogel-conjugated formate dehydrogenase. ACS Catal. 9: 5584-5589.
  52. Seelajaroen H, Bakandritsos A, Otyepka M, Zboril R, Sariciftci NS. 2020. Immobilized enzymes on graphene as nanobiocatalyst. ACS Appl. Mater. Interfaces 12: 250-259.
  53. Sharma T, Kumar A. 2021. Efficient reduction of CO2 using a novel carbonic anhydrase producing Corynebacterium flavescens. Environ. Eng. Res. 26: 200191
  54. Kanao T, Kawamura M, Fukui T, Atomi H, Imanaka T. 2002. Characterization of isocitrate dehydrogenase from the green sulfur bacterium Chlorobium limicola. A carbon dioxide-fixing enzyme in the reductive tricarboxylic acid cycle. Eur. J. Biochem. 269: 1926-1931.
  55. Katsyv A, Schoelmerich MC, Basen M, Muller V. 2021. The pyruvate:ferredoxin oxidoreductase of the thermophilic acetogen, Thermoanaerobacter kivui. FEBS Open Bio 11: 1332-1342.
  56. Gibson MI, Brignole EJ, Pierce E, Can M, Ragsdale SW, Drennan CL. 2015. The structure of an oxalate oxidoreductase provides insight into microbial 2-oxoacid metabolism. Biochemistry 54: 4112-4120.
  57. Chen PY, Li B, Drennan CL, Elliott SJ. 2019. A reverse TCA cycle 2-oxoacid:ferredoxin oxidoreductase that makes C-C bonds from CO2. Joule 3: 595-611.
  58. Li B, Steindel P, Haddad N, Elliott SJ. 2021. Maximizing (Electro)catalytic CO2 reduction with a ferredoxin-based reduction potential gradient. ACS Catal. 11: 4009-4023.
  59. Li B, Elliott SJ. 2016. The Catalytic Bias of 2-Oxoacid:ferredoxin Oxidoreductase in CO2: evolution and reduction through a ferredoxin-mediated electrocatalytic assay. Electrochim. Acta 199: 349-356.
  60. Wayama F, Hatsugai N, Okumura Y. 2022. Bipyridines mediate electron transfer from an electrode to nicotinamide adenine dinucleotide phosphate. PLoS One 17: e0269693.
  61. Striepe L, Baumgartner T. 2017. Viologens and their application as functional materials. Chem. Eur. J. 23: 16924-16940.
  62. Bar-Even A, Flamholz A, Noor E, Milo R. 2012. Thermodynamic constraints shape the structure of carbon fixation pathways. Biochim. Biophys. Acta 1817: 1646-1659.
  63. El-Zahab B, Donnelly D, Wang P. 2008. Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes. Biotechnol. Bioeng. 99: 508-514.
  64. Ren S, Wang Z, Bilal M, Feng Y, Jiang Y, Jia S, et al. 2020. Co-immobilization multienzyme nanoreactor with co-factor regeneration for conversion of CO2. Int. J. Biol. Macromol. 155: 110-118.
  65. Ji X, Su Z, Wang P, Ma G, Zhang S. 2015. Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes. ACS Nano. 9: 4600-4610.
  66. Marpani F, Sarossy Z, Pinelo M, Meyer AS. 2017. Kinetics based reaction optimization of enzyme catalyzed reduction of formaldehyde to methanol with synchronous cofactor regeneration. Biotechnol. Bioeng. 114: 2762-2770.
  67. Cazelles R, Drone J, Fajula F, Ersen O, Moldovan S, Galarneau A. 2013. Reduction of CO2 to methanol by a polyenzymatic system encapsulated in phospholipids-silica nanocapsules. New J. Chem. 37: 3721-3730.
  68. Song H, Ma C, Liu P, You C, Lin J, Zhu Z. 2019. A hybrid CO2 electroreduction system mediated by enzyme-cofactor conjugates coupled with Cu nanoparticle-catalyzed cofactor regeneration. J. CO2 Util. 34: 568-575.
  69. Lee SY, Lim SY, Seo D, Lee J-Y, Chung TD. 2016. Light-driven highly selective conversion of CO2 to formate by electrosynthesized enzyme/cofactor thin film electrode. Adv. Energy Mater. 6: 1502207.
  70. Yuan M, Sahin S, Cai R, Abdellaoui S, Hickey DP, Minteer SD, et al. 2018. Creating a low-potential redox polymer for efficient electroenzymatic CO2 reduction. Angew. Chem. Int. Ed. 57: 6582-6586.
  71. Reda T, Plugge CM, Abram NJ, Hirst J. 2008. Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc. Natl. Acad. Sci. USA 105: 10654-10658.
  72. Cai R, Milton RD, Abdellaoui S, Park T, Patel J, Alkotaini B, et al. 2018. Electroenzymatic C-C Bond Formation from CO2. J. Am. Chem. Soc. 140: 5041-5044.
  73. Zhang L, Can M, Ragsdale SW, Armstrong FA. 2018. Fast and selective photoreduction of CO2 to CO catalyzed by a complex of carbon monoxide dehydrogenase, TiO2, and Ag nanoclusters. ACS Catal. 8: 2789-2795.
  74. Kim S, Giraldo N, Rainaldi V, Machens F, Collas F, Kubis A, et al. 2023. Optimizing E. coli as a formatotrophic platform for bioproduction via the reductive glycine pathway. Front. Bioeng. Biotechnol. 11: 1091899.
  75. Davies KJ, Doroshow JH. 1986. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J. Biol. Chem. 261: 3060-3067.
  76. Dutton PL, Moser CC, Sled VD, Daldal F, Ohnishi T. 1998. A reductant-induced oxidation mechanism for complex I. Biochim. Biophys. Acta Bioenerg. 1364: 245-257.
  77. Kay CJ, Barber MJ, Notton BA, Solomonson LP. 1989. Oxidation--reduction midpoint potentials of the flavin, haem and Mo-pterin centres in spinach (Spinacia oleracea L.) nitrate reductase. Biochem. J. 263: 285-287.
  78. Giastas P, Pinotsis N, Efthymiou G, Wilmanns M, Kyritsis P, Moulis J-M, et al. 2006. The structure of the 2[4Fe-4S] ferredoxin from Pseudomonas aeruginosa at 1.32-Å resolution: comparison with other high-resolution structures of ferredoxins and contributing structural features to reduction potential values. J. Biol. Inorg. Chem. 11: 445-458.
  79. Schipke CG, Goodin DB, McRee DE, Stout CD. 1999. Oxidized and reduced Azotobacter vinelandii ferredoxin I at 1.4 A resolution: conformational change of surface residues without significant change in the [3Fe-4S]+/0 cluster. Biochemistry 38: 8228-8239.
  80. Yoch DC, Valentine RC. 1972. Four-iron (sulfide) ferredoxin from Bacillus polymyxa. J. Bacteriol. 110: 1211-1213.
  81. Giastas P, Pinotsis N, Efthymiou G, Wilmanns M, Kyritsis P, Moulis JM, et al. 2006. The structure of the 2[4Fe-4S] ferredoxin from Pseudomonas aeruginosa at 1.32-A resolution: comparison with other high-resolution structures of ferredoxins and contributing structural features to reduction potential values. J. Biol. Inorg. Chem. 11: 445-458.
  82. Yoon KS, Bobst C, Hemann CF, Hille R, Tabita FR. 2001. Spectroscopic and functional properties of novel 2[4Fe-4S] cluster-containing ferredoxins from the green sulfur bacterium Chlorobium tepidum. J. Biol. Chem. 276: 44027-44036.
  83. Kyritsis P, Hatzfeld OM, Link TA, Moulis JM. 1998. The two [4Fe-4S] clusters in Chromatium vinosum ferredoxin have largely different reduction potentials. Structural origin and functional consequences. J. Biol. Chem. 273: 15404-15411.
  84. Saridakis E, Giastas P, Efthymiou G, Thoma V, Moulis JM, Kyritsis P, et al. 2009. Insight into the protein and solvent contributions to the reduction potentials of [4Fe-4S]2+/+ clusters: crystal structures of the Allochromatium vinosum ferredoxin variants C57A and V13G and the homologous Escherichia coli ferredoxin. J. Biol. Inorg. Chem. 14: 783-799.
  85. Bender G, Ragsdale SW. 2011. Evidence that ferredoxin interfaces with an internal redox shuttle in Acetyl-CoA synthase during reductive activation and catalysis. Biochemistry 50: 276-286.
  86. Breton JL, Duff JL, Butt JN, Armstrong FA, George SJ, Petillot Y, et al. 1995. Identification of the iron-sulfur clusters in a ferredoxin from the archaeon Sulfolobus acidocaldarius. Evidence for a reduced [3Fe-4S] cluster with pH-dependent electronic properties. Eur. J. Biochem. 233: 937-946.
  87. Boll M, Fuchs G, Tilley G, Armstrong FA, Lowe DJ. 2000. Unusual spectroscopic and electrochemical properties of the 2[4Fe-4S] ferredoxin of Thauera aromatica. Biochemistry 39: 4929-4938.
  88. Abdul Wahab R, Wayama F, Hatsugai N, Okumura Y. 2022. Bipyridines mediate electron transfer from an electrode to nicotinamide adenine dinucleotide phosphate. PLoS One 17: e0269693.