DOI QR코드

DOI QR Code

Synthesis of Titanium Hydride Powder Via Magnesiothermic Reduction of TiCl4 in H2 gas Atmosphere

수소분위기 내 사염화타이타늄의 마그네슘 열환원을 이용한 수소화타이타늄 분말 합성

  • Sung-Hun Park (School of Materials Science and Engineering, Kyungpook National University) ;
  • So-Yeong Lee (School of Materials Science and Engineering, Kyungpook National University) ;
  • Ho-Seong Lee (School of Materials Science and Engineering, Kyungpook National University) ;
  • Jungshin Kang (School of Materials Science and Engineering, Pusan National University) ;
  • Ho-Sang Sohn (School of Materials Science and Engineering, Kyungpook National University)
  • 박성훈 (경북대학교 신소재공학부) ;
  • 이소영 (경북대학교 신소재공학부) ;
  • 이호성 (경북대학교 신소재공학부) ;
  • 강정신 (부산대학교 재료공학부) ;
  • 손호상 (경북대학교 신소재공학부)
  • Received : 2023.02.22
  • Accepted : 2023.04.06
  • Published : 2023.04.30

Abstract

A novel method for the synthesis of titanium hydride powder from titanium tetrachloride via the magnesiothermic reduction in an hydrogen gas atmosphere was investigated. To examine the influence of temperature on the formation of titanium hydride, the reduction was conducted at 1023~1123 K under 1 atm of hydrogen gas atmosphere for approximately 30 min. Subsequently, the titanium hydride powder was sintered by maintaining the temperature for 0~120 min, and the decrease in the oxygen concentration of the powder was investigated. The experimental results showed that TiH1.924 was produced at 1023 K, whereas mixtures of TiH1.924 and TiH1.5 were produced at 1073 K and 1123 K. In addition, the hydrogen concentration in the powder decreased with increasing temperature. The concentration of oxygen in the powder decreased with increasing temperature and sintering time owing to the decrease in the specific surface area of the powder. The minimum concentration of oxygen was 0.246 mass% when the mixture of TiH1.924 and TiH1.5 was obtained at 1073 K and a sintering time of 120 min.

본 연구에서는 수소분위기 내 사염화타이타늄의 마그네슘 열환원을 이용한 수소화타이타늄 분말 합성 과정 중 온도 및 소결 조건에 따른 분말 특성 변화를 조사하였다. 수소화타이타늄 생성에 미치는 온도의 영향을 검토하기 위해 1023~1123 K의 1 atm 수소분위기에서 약 30 분간 사염화타이타늄과 마그네슘을 반응시켰다. 환원반응 후 생성된 수소화타이타늄 분말의 소결이 진행되도록 0~120 분간 환원반응 온도를 유지시켰으며, 반응 종료 후 회수된 생성물의 산소농도를 분석하였다. 실험결과, 1023 K에서는 TiH1.924 이 생성되었으나, 1073K 및 1123 K에서는 TiH1.924와 TiH1.5의 혼합물이 생성되었다. 또한, 반응온도가 높을수록 생성된 수소화타이타늄 분말의 수소농도는 감소하였다. 반응온도 및 소결시간이 증가할수록 분말의 산소농도는 감소하였으며, 이는 분말의 비표면적 감소에 기인하였다. 반응온도 1073 K 및 소결시간 120 분 실험조건에서 최저 산소농도 0.246 mass%인 TiH1.924와 TiH1.5의 혼합물이 제조되었다.

Keywords

Acknowledgement

The authors are grateful to all members of the scientific instruments center of Kyungpook National University for their technical assistance. The authors are also grateful to all members of the industrial-academic cooperation group of Kyungpook National University for their operational support.

References

  1. Housley, K. L., 2007 : Black Sand - The History of Titanium, p. xi, Metal Management Aerospace, Inc., Hartford, USA.
  2. EHK Technologies, 2003 : Summary of Emerging Titanium Cost Reduction Technologies - A Study Performed for US Department of Energy and Oak Ridge National Laboratory, EHK Technologies, Vancouver, USA.
  3. Barnes, J. E., Kingsbury, A. B., and Bono, E., 2016 : Does "Low Cost" Titanium Powder Yield Low Cost Titanium Parts?, Proc. of Intern. Conf. on Powder Metallurgy and Particulate Materials-PowderMet2016, Metal Powder Industries Federation, Boston-USA, 5-8 June 2016.
  4. Takeda, O., Ouchi, T., and Okabe, T. H., 2020 : Recent Progress in Titanium Extraction and Recycling, Metall. Mater. Trans. B, 51, pp. 1315-1328. https://doi.org/10.1007/s11663-020-01898-6
  5. Sohn, H., 2021 : Current Status of Titanium Recycling Technology, Resources Recycling, 30(1), pp. 26-34. https://doi.org/10.7844/KIRR.2021.30.1.26
  6. Kroll, W., 1940 : The Production of Ductile Titanium, Trans. Electrochem. Soc., 78(1), pp. 35-47. https://doi.org/10.1149/1.3071290
  7. Fang, Z. Z., Paramore, J. D., Sun, P., et al., 2018 : Powder metallurgy of titanium - past, present, and future, Int. Mater. Rev., 63(7), pp. 407-459. https://doi.org/10.1080/09506608.2017.1366003
  8. Froes, F. H. and Eylon, D., 1990 : Powder metallurgy of Ti alloys, Int. Mater. Rev., 35(3), pp. 162-184. https://doi.org/10.1179/095066090790323984
  9. Yolton, C. F. and Froes, F. H., 2015 : Ch. 2 Conventional titanium powder production, pp. 21-32, Titanium Powder Metallurgy, Science, Technology and Applications, Ed. by Qian, M. and Froes, F. H., Butterworth-Heinemann, Waltham, UK.
  10. F. Seon and P. Nataf, 1988. US. 4,725,312.
  11. Hunter, M. A., 1910 : Metallic Titanium, J. Am. Chem. Soc., 32(3), pp. 330-336. https://doi.org/10.1021/ja01921a006
  12. Okabe, T. H. and Takeda, O., 2020 : Ch. 5 Fundamentals of thermochemical reduction of TiCl4, pp. 65-95, Extractive Metallurgy of Titanium - Conventional and Recent Advances in Extraction and Production of Titanium Metal, Ed. by Fang, Z. Z., Froes, F. H., and Zhang, Y., Elsevier Inc., Amsterdam, Netherlands.
  13. Sun, P., Zhang, Y., and Fang, Z. Z., 2020 : Ch. 15 Selected processes for Ti production - a cursory review, pp. 351-362, Extractive Metallurgy of Titanium - Conventional and Recent Advances in Extraction and Production of Titanium Metal, Ed. by Fang, Z. Z., Froes, F. H., and Zhang, Y., Elsevier Inc., Amsterdam, Netherlands.
  14. Leland, J. D., 1996 : Economically producing reactive metals by aerosol reduction, JOM, 48, pp. 52-55. https://doi.org/10.1007/BF03223105
  15. J. D. Leland, 1995. US. 5,460,642.
  16. Van Vuuren, D. S., Oosthuizen, S. J., and Heydenrych, M. D., 2011 : Titanium production via metallothermic reduction of TiCl4 in molten salt - problems and products, J. South. African Inst. Min. Metall., 111, pp. 141-148.
  17. Oosthuizen, S. J. and Swanepoel, J. J., 2018 : Development status of the CSIR-Ti Process, IOP Conf. Ser. Mater. Sci. Eng., 430, 012008. https://doi.org/10.1088/1757-899X/430/1/012008
  18. Fazluddin, S., 2018 : Upscaling the production of titanium metal powder, CSIR Sci. Scope, 13(1), pp. 16-17.
  19. Deura, T. N., Wakino, M., Matsunaga, T., et al., 1998 : Titanium Powder Production by TiCl4 Gas Injection into Magnesium through Molten Salts, Metall. Mater. Trans. B, 29, pp. 1167-1174. https://doi.org/10.1007/s11663-998-0038-6
  20. Michishita, N., Okabe, T. H., Sakai, N., et al., 2000 : Reduction of TiCl4 in Molten Salt/Liquid Metal Mixtures, J. Japan Inst. Metals, 64(10), pp. 940-947. https://doi.org/10.2320/jinstmet1952.64.10_940
  21. Tanaka, J., Okabe, T. H., Sakai, N., et al., 2001 : New Titanium Production Process with Molten Salt Mediator, J. Japan Inst. Metals, 65(8), pp. 659-667. https://doi.org/10.2320/jinstmet1952.65.8_659
  22. Kametani, H. and Sakai, H., 1993 : A Spray-reaction Process for Production of Titanium Powder, Proc. of the 7th Intern. Conf. on Titanium, Titanium '92 Science and Technology, pp. 805-812, The Titanium Committee of the Minerals, Metals & Materials, San Diego-USA, 29 June-2 July 1992.
  23. Takeuchi, S., Kurosawa, T., and Tezuka, M., 1961 : Thermodynamical Studies and Preliminary Experiments on the Production of Ti in Crystalline Form by Reaction in the Gaseous Phase, Trans. JIM, 2(1), pp. 53-56. https://doi.org/10.2320/matertrans1960.2.53
  24. Takeuchi, S., and Tezuka, M., 1961 : The Purity and Mechanical Properties of Crystalline Ti Produced by the Gaseous Reaction between TiCl4 and Mg, Trans. JIM, 2(1), pp. 64-69. https://doi.org/10.2320/matertrans1960.2.64
  25. Hansen, D. A. and Gerdemann, S. J., 1998 : Producing Titanium Powder by Continuous Vapor-Phase Reduction, JOM, 50, pp. 56-58. https://doi.org/10.1007/s11837-998-0289-3
  26. Doblin, C. and Beruldsen, A., 2012 : Insights into the Formation of Titanium in the TiROTM Process, Proc. of the 12th World Conf. on Titanium, Ti-2011, pp. 1735-1739, The Nonferrous Metals Society of China, Beijing-China, 19-24 June 2011.
  27. Doblin, C., Chryss, D. A., and Monch, A., 2012 : Titanium powder from the TiROTM process, Key Eng. Mater., 520, pp. 95-100. https://doi.org/10.4028/www.scientific.net/KEM.520.95
  28. Doblin, C., Freeman, D., and Richards, M., 2013 : The TiRO™ process for the continuous direct production of titanium powder, Key Eng. Mater., 551, pp. 37-43. https://doi.org/10.4028/www.scientific.net/KEM.551.37
  29. Doblin, C., Cantin, G. M. D., and Gulizia, S., 2016 : Processing TiRO™ powder for strip production and other powder consolidation applications, Key Eng. Mater., 704, pp. 293-301. https://doi.org/10.4028/www.scientific.net/KEM.704.293
  30. Elliott, G. R. B., 1998 : The Continuous Production of Titanium Powder Using Circulating Molten Salt, JOM, 50, pp. 48-49. https://doi.org/10.1007/s11837-998-0415-2
  31. Suzuki, R. O., Harada, T. N., Matsunaga, T., et al., 1999 : Titanium Powder Prepared by Magnesiothermic Reduction of Ti2+ in Molten Salt, Metall. Mater. Trans. B, 30, pp. 403-410. https://doi.org/10.1007/s11663-999-0072-z
  32. F. H. Froes, B. G. Eranezhuth, and K. Prisbrey, 2001. US. 6,231,636 B1.
  33. Sears, J. W., 1994 : Plasma Quench Production of Titanium from Titanium Tetrachloride, The Department of Energy's Idaho National Engineering Laboratory, Idaho Falls, USA.
  34. Cordes, R. A. and Donaldson, A., 2000 : Titanium Metal Powder Production by the Plasma Quench Process, Idaho Titanium Technologies, Inc., Idaho Falls, USA.
  35. Duz, V., Matviychuk, M., Klevtsov, A., et al., 2017 : Met. Powder Rep., 72(1), pp. 30-38. https://doi.org/10.1016/j.mprp.2016.02.051
  36. Matviychuk, M., Klevtsov, A., and Moxson, V. S., 2020 : Ch. 7 A modified Kroll process via production of TiH2 - thermochemical reduction of TiCl4 using hydrogen and Mg, pp. 113-128, Extractive Metallurgy of Titanium - Conventional and Recent Advances in Extraction and Production of Titanium Metal, Ed. by Fang, Z. Z., Froes, F. H., and Zhang, Y., Elsevier Inc., Amsterdam, Netherlands.
  37. Robertson, I. M. and Schaffer, G. B., 2010 : Comparison of sintering of titanium and titanium hydride powders, Powder Metall., 53(1), pp. 12-19. https://doi.org/10.1179/003258909X12450768327063
  38. Wang, H. T., Lefler. M., Fang, Z. Z., et al., 2010 : Titanium and Titanium Alloy via Sintering of TiH2, Key Eng. Mater., 436, pp. 157-163.  https://doi.org/10.4028/www.scientific.net/KEM.436.157
  39. San-Martin, A. and Manchester, D. F., 1987 : The H-Ti (Hydrogen-Titanium) system, Bull. Alloy Phase Diagrams, 8(1), pp. 30-42. https://doi.org/10.1007/BF02868888
  40. Barin, I., 1995 : Thermochemical Data of Pure Substance, Wiley-VCH, Weinheim, Germany.
  41. HSC Chemistry Software ver. 7.11, 2011 : Reaction Equations Module, Outokumpu Research Oy, Pori, Finland.
  42. Okabe, T. H., Suzuki, R. O., Oishi, T., et al., 1991 : Production of Extra Low Oxygen Titanium by CalciumHalide Flux Deoxidation, Tetsu-to-Hagane, 77(1), pp. 93-99. https://doi.org/10.2355/tetsutohagane1955.77.1_93
  43. Zhang, Y., Fang, Z. Z., Sun, P., et al., 2020 : Ch. 10 Deoxygenation of Ti metal, pp. 181-223, Extractive Metallurgy of Titanium - Conventional and Recent Advances in Extraction and Production of Titanium Metal, Ed. by Fang, Z. Z., Froes, F. H., and Zhang, Y., Elsevier Inc., Amsterdam, Netherlands.