DOI QR코드

DOI QR Code

Overview on the Trend Analysis for the Dealkalization Technology of Bauxite Residues

보크사이트 제련 잔재물의 중화기술 동향 분석

  • Pyeong Seop Seo (KC Corporation) ;
  • Man Seung Lee (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University)
  • 서평섭 (케이씨(주)) ;
  • 이만승 (목포대학교 공과대학 신소재공학과)
  • Received : 2023.01.17
  • Accepted : 2023.02.06
  • Published : 2023.02.28

Abstract

Bauxite residues represent industrial wastes that have been accumulating over the past 120 years since the beginning of the alumina industry. They are typically classified as harmful substances owing to their strong alkalinity and salinity characteristics. These residues, with quantities steadily increasing by more than 150 million tons annually worldwide, are recycled into various industrial materials using dealkalization processing. This study investigates the generation process of alkaline substances in bauxite smelting and the recent techniques adopted for controlling their alkalinity. The properties of bauxite residues are known to vary depending on the raw mining and digestion methods. Thus, the dealkalization process must be selected considering the type of alkaline material, local environment, and infrastructure.

보크사이트 잔재물은 알루미나 산업의 시작과 함께 120년간 지속적으로 발생하고 있는 제련 부산물로 높은 알칼리성과 염도 특성으로 유해물질로 분류되고 있다. 전 세계적으로 연간 1억 5천만톤 이상 꾸준히 증가 중인 잔재물을 다양한 산업 소재로 재활용하기 위해서는 중화 처리가 필요하다. 본 논문에서는 보크사이트 제련과정에서 알칼리성 물질의 형성과정과 최근 수십 년 동안 잔재물의 알칼리도 관리를 위한 몇 가지 기술을 분석하였다. 보크사이트 잔재물은 원광 및 제련 방법에 따라 다양한 특성을 갖기 때문에 알칼리성 물질의 종류, 지역 환경 및 인프라를 고려하여 중화공정을 선택하는 것이 바람직하다.

Keywords

References

  1. Khairul, M. A., Zanganeh, J., Moghtaderi, B., 2019 : The composition, recycling and utilisation of Bayer red mud, Resources, Conservation and Recycling, 141, pp.483-498.  https://doi.org/10.1016/j.resconrec.2018.11.006
  2. David, B., James, F. R., 2019 : Mineral Commodity Summaries, pp.30, USGS. U.S. Geological Survey 
  3. Klauber, C., Harwood, N., Hockridge, R., et al., 2016 : Proposed Mechanism for the Formation of Dust Horizons on Bauxite Residue Disposal Areas, Essential Readings in Light Metals: Volume 1, pp.951-956.  https://doi.org/10.1007/978-3-319-48176-0_132
  4. Hong, H.S., Kim, Y.L., Cho, H.J., et al., 2017 : Overview and Future Concerns for Red Mud Recycling Technology and Industry, J. of Korean Inst. of Resources Recycling, 26, pp.12-21. 
  5. Rai, S., Nimje, M. T., Chaddha, M. J., et al., 2019 : Recovery of iron from bauxite residue using advanced separation techniques, Miner. Eng., 134, pp.222-231.  https://doi.org/10.1016/j.mineng.2019.02.018
  6. Bruckard, W. J., Calle, C. M., Davidson, R. H., et al., 2013 : Smelting of bauxite residue to form a soluble sodium aluminium silicate phase to recover alumina and soda, Mineral Processing and Extractive Metallurgy, 119, pp.18-26.  https://doi.org/10.1179/037195509X12518785461760
  7. Tsakiridis, P. E., Agatzini-Leonardou, S., Oustadakis, P., 2004 : Red mud addition in the raw meal for the production of Portland cement clinker, J. Hazard. Mater., 116, pp.103-110.  https://doi.org/10.1016/j.jhazmat.2004.08.002
  8. Grafe, M., Power, G., Klauber, C., 2011 : Bauxite residue issues: III. Alkalinity and associated chemistry, Hydrometallurgy, 108, pp.60-79.  https://doi.org/10.1016/j.hydromet.2011.02.004
  9. Xue, S., Li, X., Kong, X., et al., 2017 : Alkaline regulation of bauxite residue: A comprehensive review (in Chinese), Acta Sci Circumstantiae, 37, pp.2815-2828. 
  10. Palmer, S. J., Frost, R. L., 2009 : Characterisation of bauxite and seawater neutralised bauxite residue using XRD and vibrational spectroscopic techniques, JMatS, 44, pp.55-63.  https://doi.org/10.1007/s10853-008-3123-y
  11. Menzies, N., Fulton, I., Morrell, W., 2004 : Seawater neutralization of alkaline bauxite residue and implications for revegetation, J. Environ. Qual., 33, pp.1877-1884.  https://doi.org/10.2134/jeq2004.1877
  12. McConchie, D., Saenger, P., Fawkes, R., 1996 : An environmental assessment of the use of seawater to neutralise bauxite refinery wastes, Second International Symposium on Extraction and Processing for the Treatment and Minimization of Wastes, Minerals, Metals & Materials Society, pp.407-416. 
  13. Hanahan, C., McConchie, D., Pohl, J., et al., 2004 : Chemistry of seawater neutralization of bauxite refinery residues (red mud), Environ. Eng. Sci., 21, pp.125-138.  https://doi.org/10.1089/109287504773087309
  14. McConchie, D., Clark, M., Davies-McConchie, F., 2002 : New strategies for the management of bauxite refinery residues (red mud), in: Proceedings of the 6th international alumina quality workshop, pp.327-332. 
  15. Harris, M.A., Rengasamy, P., 2004 : Sodium affected subsoils, gypsum, and green-manure: Inter- actions and implications for amelioration of toxic red mud wastes, Environ. Geol., 45, pp.1118-1130.  https://doi.org/10.1007/s00254-004-0970-y
  16. Courtney, R., Mullen, G., Harrington, T., 2009 : An Evaluation of Revegetation Success on Bauxite Residue, Restor. Ecol., 17, pp.350-358.  https://doi.org/10.1111/j.1526-100X.2008.00375.x
  17. Kirwan, L. J., Hartshorn, A., McMonagle, J. B., et al., 2013 : Chemistry of bauxite residue neutralisation and aspects to implementation, Int. J. Miner. Process., 119, pp.40-50.  https://doi.org/10.1016/j.minpro.2013.01.001
  18. Chvedov, D., Ostap, S., Le, T., 2001 : Surface properties of red mud particles from potentiometric titration, Colloids Surf. Physicochem. Eng. Aspects, 182, pp.131-141.  https://doi.org/10.1016/S0927-7757(00)00814-1
  19. Kishida, M., Harato, T., Tokoro, C., et al., 2017 : In situ remediation of bauxite residue by sulfuric acid leaching and bipolar-membrane electrodialysis, Hydrometallurgy, 170, pp.58-67.  https://doi.org/10.1016/j.hydromet.2016.04.012
  20. Smith, P. G., Pennifold, R. M., Davies M. G., et al., 2003 : Reactions of Carbon Dioxide with Tri-Calcium Aluminate, Electrometallurgy and Environmental Hydrometallurgy, pp.1705-1715. 
  21. Khaitan, S., Dzombak, D. A., Lowry, G. V., 2009 : Mechanisms of Neutralization of Bauxite Residue by Carbon Dioxide, J. Environ. Eng., 135, pp.433-438.  https://doi.org/10.1061/(ASCE)EE.1943-7870.0000010
  22. Han, Y. S., Ji, S., Lee, P. K., et al., 2017 : Bauxite residue neutralization with simultaneous mineral carbonation using atmospheric CO2, J. Hazard. Mater., 326, pp.87-93.  https://doi.org/10.1016/j.jhazmat.2016.12.020
  23. Fois, E., Lallai, A., Mura, G., 2007 : Sulfur Dioxide Absorption in a Bubbling Reactor with Suspensions of Bayer Red Mud, Ind. Eng. Chem. Res., 46, pp.6770-6776.  https://doi.org/10.1021/ie0616904
  24. Wang, X., Zhang, Y., Lv, F., et al., 2015 : Removal of alkali in the red mud by SO2 and simulated flue gas under mild conditions, Environ. Prog. Sustain. Energy, 34, pp. 81- 87.  https://doi.org/10.1002/ep.11958
  25. Zhu, X., Li, W., Guan, X., 2015 : An active dealkalization of red mud with roasting and water leaching, J. Hazard. Mater., 286, pp.85-91.  https://doi.org/10.1016/j.jhazmat.2014.12.048
  26. Zhong, L., Zhang, Y., Zhang, Y., 2009 : Extraction of alumina and sodium oxide from red mud by a mild hydrochemical process, J. Hazard. Mater., 172, pp.1629-1634.  https://doi.org/10.1016/j.jhazmat.2009.08.036
  27. Zhang, R., Zheng, S., Ma, S., et al., 2011 : Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process, J. Hazard. Mater., 189, pp.827-835.  https://doi.org/10.1016/j.jhazmat.2011.03.004
  28. Li, R., Zhang, T., Liu, Y., et al., 2016 : Calcification-carbonation method for red mud processing, J. Hazard. Mater., 316, pp.94-101.  https://doi.org/10.1016/j.jhazmat.2016.04.072
  29. Santini, T. C., Kerr, J. L., Warren, L. A., 2015 : Microbially-driven strategies for bioremediation of bauxite residue, J. Hazard. Mater., 293, pp.131-157.  https://doi.org/10.1016/j.jhazmat.2015.03.024
  30. Nagpal, S., Chuichulcherm, S., Livingston, A., et al., 2000 : Ethanol utilization by sulfate-reducing bacteria: An experimental and modeling study, Biotechnol. Bioeng., 70, pp.533-543.  https://doi.org/10.1002/1097-0290(20001205)70:5<533::AID-BIT8>3.0.CO;2-C
  31. Banning, N. C., Phillips, I. R., Jones, D. L., et al., 2011 : Development of Microbial Diversity and Functional Potential in Bauxite Residue Sand under Rehabilitation, Restor. Ecol., 19, pp.78-87. https://doi.org/10.1111/j.1526-100X.2009.00637.x