DOI QR코드

DOI QR Code

Lateral impact behaviour of concrete-filled steel tubes with localised pitting corrosion

  • Gen Li (Department of Ocean Science and Engineering, Southern University of Science and Technology) ;
  • Chao Hou (Department of Ocean Science and Engineering, Southern University of Science and Technology) ;
  • Luming Shen (School of Civil Engineering, The University of Sydney) ;
  • Chuan-Chuan Hou (School of Transportation Science and Engineering, Beihang University)
  • Received : 2022.11.11
  • Accepted : 2023.05.10
  • Published : 2023.06.10

Abstract

Steel corrosion induces structural deterioration of concrete-filled steel tubes (CFSTs), and any potential extreme action on a corroded CFST would pose a severe threat. This paper presents a comprehensive investigation on the lateral impact behaviour of CFSTs suffering from localised pitting corrosion damage. A refined finite element analysis model is developed for the simulation of locally corroded CFSTs subjected to lateral impact loads, which takes into account the strain rate effects on concrete and steel materials as well as the random nature of corrosion pits, i.e., the distribution patterns and the geometric characteristics. Full-range nonlinear analysis on the lateral impact behaviour in terms of loading and deforming time-history relations, nonlinear material stresses, composite actions, and energy dissipations are presented for CFSTs with no corrosion, uniform corrosion and pitting corrosion, respectively. Localised pitting corrosion is found to pose a more severe deterioration on the lateral impact behaviour of CFSTs due to the plastic deformation concentration, the weakened confinement and the reduction in energy absorption capacity of the steel tube. An extended parametric study is then carried out to identify the influence of the key parameters on the lateral impact behaviour of CFSTs with localised pitting corrosion. Finally, simplified design methods considering the features of pitting corrosion are proposed to predict the dynamic flexural capacity of locally pitted CFSTs subjected to lateral impact loads, and reasonable accuracy is obtained.

Keywords

Acknowledgement

The research reported in this paper is supported by Shenzhen Science and Technology Program (No. RCYX20210706092044076). The financial support is highly appreciated.

References

  1. ABAQUS (2016), ABAQUS Standard User's Manual, version 6.16. Providence, RI, (USA), Dassault Systemes Corp.
  2. Abramowicz, W. and Jones, N. (1984), "Dynamic axial crushing of square tubes". Int. J. Impact. Eng., 2(2), 179-208. https://doi.org/10.1016/0734-743X(84)90005-8.
  3. Ahn, J.H., Jeon, S.H., Jeong, Y.S., Cho, K.I. and Huh, J. (2018), "Evaluation of residual compressive strength and behavior of corrosion-damaged carbon steel tubular members", Materials, 11(7), 1254. https://doi.org/10.3390/ma11071254.
  4. Bambach, M.R., Jama, H., Zhao, X.L. and Grzebieta, R.H. (2008), "Hollow and concrete filled steel hollow sections under transverse loads", Eng. Struct., 30, 2859-2870. https://doi.org/10.1016/j.engstruct.2008.04.003.
  5. Bhandari, J., Khan, F., Abbassi, R., Garaniya, V. and Ojeda, R. (2015), "Modelling of pitting corrosion in marine and offshore steel structures-A technical review", J. Loss. Prevent. Proc., 37, 39-62. https://doi.org/10.1016/j.jlp.2015.06.008.
  6. CEB-FIP Model Code 1990 (1993), Comite Euro-International Du Beton; Trowbridge, UK.
  7. Caines, S., Khan, F. and Shirokoff, J. (2013), "Analysis of pitting corrosion on steel under insulation in marine environments", J. Loss. Prevent. Proc., 26(6), 1466-1483. https://doi.org/10.1016/j.jlp.2013.09.010.
  8. Deng, Y., Tuan, C.Y. and Xiao, Y. (2012), "Flexural behavior of concrete-filled circular steel tubes under high-strain rate impact loading", J. Struc.t Eng., 138, 449-456. http://doi.org/10.1061/(ASCE)ST.1943-541X.0000464.
  9. DNVGL-ST-F101 (2017), Submarine Pipeline Systems, Det Norske Veritas AS; Hovik, Norway.
  10. Gao, X.D., Shao, Y.B., Chen, C., Zhu, H.M. and Li, K.S. (2022), "Experimental and numerical investigation on transverse impact resistance behaviour of pipe-in-pipe submarine pipelines after service time", Ocean. Eng., 248, 110868. https://doi.org/10.1016/j.oceaneng.2022.110868.
  11. GB/T 51446 (2021), Technical standard for concrete-filled steel tubular hybrid structures, Ministry of Housing and Urban-Rural Development of the People's Republic of China; Beijing, China.
  12. Guo, L.H., Huang, H.J., Jia, C. and Romanov, K. (2020), "Axial behaviour of square CFST with local corrosion simulated by artificial notch", J. Constr. Steel. Res., 174, 106314. https://doi.org/10.1016/j.jcsr.2020.106314.
  13. Han, L.H., Zhao, X.L. and Tao, Z. (2001), "Tests and mechanics model for concrete-filled SHS columns, columns and beam-columns", Steel. Compos. Struct., 1(1), 51-74. https://doi.org/10.1296/SCS2001.01.01.04.
  14. Han, L.H., Yao, G.H. and Tao, Z. (2007), "Performance of concrete-filled thin-walled steel tubes under pure torsion", Thin. Wall. Struct., 45(1), 24-36. https://doi.org/10.1016/j.tws.2007.01.008.
  15. Han, L.H., Hou, C.C., Zhao, X.L. and Rasmussen, K.J.R. (2014), "Behaviour of high-strength concrete filled steel tubes under transverse impact loading", J. Constr. Steel. Res., 92, 25-39. https://doi.org/10.1016/j.jcsr.2013.09.003.
  16. Harik, I.E., Shaaban, A.M., Gesund, H., Valli, G.Y.S and Wang, S.T. (1990), "United states bridges failures, 1951-1988", J. Perform. Constr. Fac., 4(4), 272-277. https://doi.org/10.1061/(ASCE)0887-3828(1990)4:4(272).
  17. Hou, C., Han, L.H. and Zhao, X.L. (2013), "Full-range analysis on square CFST stub columns and beams under loading and chloride corrosion", Thin. Wall. Struct., 68, 50-64. https://doi.org/10.1016/j.tws.2013.03.003.
  18. Hou, C.C. and Han, L.H. (2018), "Life-cycle performance of deteriorated concrete-filled steel tubular (CFST) structures subjected to lateral impact", Thin. Wall. Struct., 132, 362-374. https://doi.org/10.1016/j.tws.2018.08.025.
  19. Hua, Y.X., Han, L.H. and Hou, C. (2019), "Behaviour of square CFST beam-columns under combined sustained load and corrosion: FEA modelling and analysis", J. Constr. Steel. Res., 157, 245-259. https://doi.org/10.1016/j.jcsr.2019.01.027.
  20. HyperMesh Introduction (2020), Pre-processing for Finite Element Analysis. Troy MI, (USA): Altair Engineering, Inc.
  21. Jamaluddin, N., Lam, D., Dai X.H. and Ye. J. (2013), "An experimental study on elliptical concrete filled columns under axial compression", J. Constr. Steel. Res., 157, 245-259. https://doi.org/10.1016/j.jcsr.2013.04.002.
  22. Khedmati, M.R., Nouri, Z. and Roshanali, M.M. (2011), "An effective proposal for strength evaluation of steel plates randomly corroded on both sides under uniaxial compression", Steel. Compos. Struct., 11(3), 183-205. https://doi.org/10.12989/scs.2011.11.3.183.
  23. Lam, D. and Williams, C.A. (2004), "Experimental study on concrete filled square hollow sections", Steel. Compos. Struct., 4(2), 95-112. https://doi.org/10.12989/scs.2004.4.2.095.
  24. Li, G., Hou, C., Shen, L.M. and Yao, G.H. (2022), "Performance and strength calculation of CFST columns with localized pitting corrosion damage", J. Constr. Steel. Res., 188, 107011. https://doi.org/10.1016/j.jcsr.2021.107011.
  25. Melchers, R.E. (2006), "Recent progress in the modelling of corrosion of structural steel immersed in seawaters", J. Infrast. Syst., 12(3), 154-162. https://doi.org/10.1061/ASCE1076-0342200612:3154.
  26. Melchers, R.E. (2008), "Extreme value statistics and long-term marine pitting corrosion of steel", Probabilist. Eng. Mech., 23, 482-488. https://doi.org/10.1016/j.probengmech.2007.09.003.
  27. Malvar, L.J. and Ross, C.A. (1998), "Review of strain rate effects for concrete in tension", Material J., 95(6), 7350739. https://doi.org/10.14359/418.
  28. Nakai, T., Matsushita, H., Yamamoto, N. and Arai, H. (2004), "Effect of pitting corrosion on local strength of hold frames of bulk carriers", Mar. Struct., 17, 403-432. https://doi.org/10.1016/j.marstruc.2004.10.001.
  29. Nakai, T., Matsushita, H. and Yamamoto, N. (2006), "Effect of pitting corrosion on the ultimate strength of steel plates subjected to in-plane compression and bending", J. Mar. Sci. Tech., 11, 52-64. https://doi.org/10.1007/s00773-005-0203-4.
  30. Paik, J.K., Lee, J.M. and Ko, M.J. (2003), "Ultimate compressive strength of plate elements with pit corrosion wastage", P. I. Mech. Eng. M-J. Eng., 217(4), 185-200. https://doi.org/10.1177/14750902032170.
  31. Ryu, D.M., Wang, L., Kim, S.K. and Lee, J.M. (2017), "Comparative study on deformation and mechanical behavior of corroded pipe: Part I-Numerical simulation and experimental investigation under impact load", Int. J. Nav. Arch. Ocean., 9(5), 509-524. https://doi.org/10.1016/j.ijnaoe.2017.01.005.
  32. Sharland, S.M. (1987), "A review of the theoretical modelling of crevice and pitting corrosion". Corros. Sci., 27(3), 289-323. https://doi.org/10.1016/0010-938X(87)90024-2.
  33. Shen, J.M., Wang, C.J. and Jiang, J.J. (1993), Finite Element Method of Reinforced Concrete and Limited Analysis of Plates and Shells, Tsinghua University Press, Beijing, China.
  34. Tao, Z., Uy, B., Han, L.H. and Wang, Z.B. (2009), "Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression", Thin. Wall. Struct., 47(12), 1544-1556. https://doi.org/10.1016/j.tws.2009.05.006.
  35. Wang, H.K., Yu, Y., Yu, J.X., Xu, W.P., Chen, H.C., Wang, Z.Y. and Han, M.X. (2019), "Effect of pitting defects on the buckling strength of thick-wall cylinder under axial compression", Constr. Build. Materr., 224, 226-241. https://doi.org/10.1016/j.conbuildmat.2019.07.074.
  36. Wang, R., Han, L.H. and Hou, C.C. (2013), "Behavior of concrete filled steel tubular (CFST) members under lateral impact: Experiment and FEA model", J. Constr. Steel. Res., 80, 188-201. https://doi.org/10.1016/j.jcsr.2012.09.003.
  37. Wang, R.H. and Shenoi, R.A. (2019), "Experimental and numerical study on ultimate strength of steel tubular members with pitting corrosion damage", Mar. Struct., 64, 124-137. https://doi.org/10.1016/j.marstruc.2018.11.006.
  38. Wang, R.H., Guo, H.C. and Shenoi, R.A. (2020), "Experimental and numerical study of localized pitting effect on compressive behavior of tubular members", Mar Struct., 72, 102784. https://doi.org/10.1016/j.marstruc.2020.102784.
  39. Wang, Y., Qian, X.D., Liew, J.Y.R. and Zhang, M.H. (2015), "Impact of cement composite filled steel tubes: An experimental, numerical and theoretical treatise", Thin. Wall. Struct., 87, 76-88. https://doi.org/10.1016/j.tws.2014.11.007.
  40. Wang, Y., Qian, X.D., Liew, J.Y.R. and Zhang, M.H. (2016), "A numerical and theoretical investigation on composite pipe-in-pipe structure under impact", Steel. Compos. Struct., 22(5), 1085-1114. https://doi.org/10.12989/scs.2016.22.5.1085.
  41. Xian, W., Chen, W.S., Hao, H. and Wang, W.D. (2021), "Experimental and numerical studies on square steel-reinforced concrete-filled steel tubular (SRCFST) members subjected to lateral impact", Thin. Wall. Struct., 160, 107409. https://doi.org/10.1016/j.tws.2020.107409.
  42. Yang, X.Q., Yang, H. and Zhang, S.M. (2020), "Transverse impact behavior of high-strength concrete filled normal-/high-strength square steel tube columns", Int. J. Impact. Eng., 139, 103512. https://doi.org/10.1016/j.ijimpeng.2020.103512.
  43. Yang, X.Q., Yang, H., Zhang, Z.Q., Zhu, Y. and Lai, Z.C. (2022), "Impact resistance and simplified evaluation method for square CFST members subjected to transverse impact", J. Constr. Steel. Res., 198, 107522. https://doi.org/10.1016/j.jcsr.2022.107522.
  44. Yang, Y., Xu, T.Y., Qin, J.Y., He, Z., Yu, Q., Su, J. and Zhou, X.F. (2021), "Experimental study on the compression mechanical behaviour of steel pipes with mechanically induced pitting corrosion", Appl. Ocean. Res., 116, 102880. https://doi.org/10.1016/j.apor.2021.102880.
  45. Yuan, Y., Zhang, N., Liu, H.Q., Zhao, Z.W., Fan, X.T. and Zhang, H.W. (2020), "Influence of random pit corrosion on axial stiffness of thin-walled circular tubes", Structures., 62, 839-846. https://doi.org/10.1016/j.istruc.2020.10.080.
  46. Zhao, Z.W., Zheng, C.Y., Zhang, J.N., Liang, B. and Zhang, H.W. (2021), "Influence of random pitting corrosion on moment capacity of thin-walled circular tubes subjected to compression force", Int. J. Pres. Ves. Pip., 189, 104260. https://doi.org/10.1016/j.ijpvp.2020.104260.