Acknowledgement
The research reported in this paper is supported by Shenzhen Science and Technology Program (No. RCYX20210706092044076). The financial support is highly appreciated.
References
- ABAQUS (2016), ABAQUS Standard User's Manual, version 6.16. Providence, RI, (USA), Dassault Systemes Corp.
- Abramowicz, W. and Jones, N. (1984), "Dynamic axial crushing of square tubes". Int. J. Impact. Eng., 2(2), 179-208. https://doi.org/10.1016/0734-743X(84)90005-8.
- Ahn, J.H., Jeon, S.H., Jeong, Y.S., Cho, K.I. and Huh, J. (2018), "Evaluation of residual compressive strength and behavior of corrosion-damaged carbon steel tubular members", Materials, 11(7), 1254. https://doi.org/10.3390/ma11071254.
- Bambach, M.R., Jama, H., Zhao, X.L. and Grzebieta, R.H. (2008), "Hollow and concrete filled steel hollow sections under transverse loads", Eng. Struct., 30, 2859-2870. https://doi.org/10.1016/j.engstruct.2008.04.003.
- Bhandari, J., Khan, F., Abbassi, R., Garaniya, V. and Ojeda, R. (2015), "Modelling of pitting corrosion in marine and offshore steel structures-A technical review", J. Loss. Prevent. Proc., 37, 39-62. https://doi.org/10.1016/j.jlp.2015.06.008.
- CEB-FIP Model Code 1990 (1993), Comite Euro-International Du Beton; Trowbridge, UK.
- Caines, S., Khan, F. and Shirokoff, J. (2013), "Analysis of pitting corrosion on steel under insulation in marine environments", J. Loss. Prevent. Proc., 26(6), 1466-1483. https://doi.org/10.1016/j.jlp.2013.09.010.
- Deng, Y., Tuan, C.Y. and Xiao, Y. (2012), "Flexural behavior of concrete-filled circular steel tubes under high-strain rate impact loading", J. Struc.t Eng., 138, 449-456. http://doi.org/10.1061/(ASCE)ST.1943-541X.0000464.
- DNVGL-ST-F101 (2017), Submarine Pipeline Systems, Det Norske Veritas AS; Hovik, Norway.
- Gao, X.D., Shao, Y.B., Chen, C., Zhu, H.M. and Li, K.S. (2022), "Experimental and numerical investigation on transverse impact resistance behaviour of pipe-in-pipe submarine pipelines after service time", Ocean. Eng., 248, 110868. https://doi.org/10.1016/j.oceaneng.2022.110868.
- GB/T 51446 (2021), Technical standard for concrete-filled steel tubular hybrid structures, Ministry of Housing and Urban-Rural Development of the People's Republic of China; Beijing, China.
- Guo, L.H., Huang, H.J., Jia, C. and Romanov, K. (2020), "Axial behaviour of square CFST with local corrosion simulated by artificial notch", J. Constr. Steel. Res., 174, 106314. https://doi.org/10.1016/j.jcsr.2020.106314.
- Han, L.H., Zhao, X.L. and Tao, Z. (2001), "Tests and mechanics model for concrete-filled SHS columns, columns and beam-columns", Steel. Compos. Struct., 1(1), 51-74. https://doi.org/10.1296/SCS2001.01.01.04.
- Han, L.H., Yao, G.H. and Tao, Z. (2007), "Performance of concrete-filled thin-walled steel tubes under pure torsion", Thin. Wall. Struct., 45(1), 24-36. https://doi.org/10.1016/j.tws.2007.01.008.
- Han, L.H., Hou, C.C., Zhao, X.L. and Rasmussen, K.J.R. (2014), "Behaviour of high-strength concrete filled steel tubes under transverse impact loading", J. Constr. Steel. Res., 92, 25-39. https://doi.org/10.1016/j.jcsr.2013.09.003.
- Harik, I.E., Shaaban, A.M., Gesund, H., Valli, G.Y.S and Wang, S.T. (1990), "United states bridges failures, 1951-1988", J. Perform. Constr. Fac., 4(4), 272-277. https://doi.org/10.1061/(ASCE)0887-3828(1990)4:4(272).
- Hou, C., Han, L.H. and Zhao, X.L. (2013), "Full-range analysis on square CFST stub columns and beams under loading and chloride corrosion", Thin. Wall. Struct., 68, 50-64. https://doi.org/10.1016/j.tws.2013.03.003.
- Hou, C.C. and Han, L.H. (2018), "Life-cycle performance of deteriorated concrete-filled steel tubular (CFST) structures subjected to lateral impact", Thin. Wall. Struct., 132, 362-374. https://doi.org/10.1016/j.tws.2018.08.025.
- Hua, Y.X., Han, L.H. and Hou, C. (2019), "Behaviour of square CFST beam-columns under combined sustained load and corrosion: FEA modelling and analysis", J. Constr. Steel. Res., 157, 245-259. https://doi.org/10.1016/j.jcsr.2019.01.027.
- HyperMesh Introduction (2020), Pre-processing for Finite Element Analysis. Troy MI, (USA): Altair Engineering, Inc.
- Jamaluddin, N., Lam, D., Dai X.H. and Ye. J. (2013), "An experimental study on elliptical concrete filled columns under axial compression", J. Constr. Steel. Res., 157, 245-259. https://doi.org/10.1016/j.jcsr.2013.04.002.
- Khedmati, M.R., Nouri, Z. and Roshanali, M.M. (2011), "An effective proposal for strength evaluation of steel plates randomly corroded on both sides under uniaxial compression", Steel. Compos. Struct., 11(3), 183-205. https://doi.org/10.12989/scs.2011.11.3.183.
- Lam, D. and Williams, C.A. (2004), "Experimental study on concrete filled square hollow sections", Steel. Compos. Struct., 4(2), 95-112. https://doi.org/10.12989/scs.2004.4.2.095.
- Li, G., Hou, C., Shen, L.M. and Yao, G.H. (2022), "Performance and strength calculation of CFST columns with localized pitting corrosion damage", J. Constr. Steel. Res., 188, 107011. https://doi.org/10.1016/j.jcsr.2021.107011.
- Melchers, R.E. (2006), "Recent progress in the modelling of corrosion of structural steel immersed in seawaters", J. Infrast. Syst., 12(3), 154-162. https://doi.org/10.1061/ASCE1076-0342200612:3154.
- Melchers, R.E. (2008), "Extreme value statistics and long-term marine pitting corrosion of steel", Probabilist. Eng. Mech., 23, 482-488. https://doi.org/10.1016/j.probengmech.2007.09.003.
- Malvar, L.J. and Ross, C.A. (1998), "Review of strain rate effects for concrete in tension", Material J., 95(6), 7350739. https://doi.org/10.14359/418.
- Nakai, T., Matsushita, H., Yamamoto, N. and Arai, H. (2004), "Effect of pitting corrosion on local strength of hold frames of bulk carriers", Mar. Struct., 17, 403-432. https://doi.org/10.1016/j.marstruc.2004.10.001.
- Nakai, T., Matsushita, H. and Yamamoto, N. (2006), "Effect of pitting corrosion on the ultimate strength of steel plates subjected to in-plane compression and bending", J. Mar. Sci. Tech., 11, 52-64. https://doi.org/10.1007/s00773-005-0203-4.
- Paik, J.K., Lee, J.M. and Ko, M.J. (2003), "Ultimate compressive strength of plate elements with pit corrosion wastage", P. I. Mech. Eng. M-J. Eng., 217(4), 185-200. https://doi.org/10.1177/14750902032170.
- Ryu, D.M., Wang, L., Kim, S.K. and Lee, J.M. (2017), "Comparative study on deformation and mechanical behavior of corroded pipe: Part I-Numerical simulation and experimental investigation under impact load", Int. J. Nav. Arch. Ocean., 9(5), 509-524. https://doi.org/10.1016/j.ijnaoe.2017.01.005.
- Sharland, S.M. (1987), "A review of the theoretical modelling of crevice and pitting corrosion". Corros. Sci., 27(3), 289-323. https://doi.org/10.1016/0010-938X(87)90024-2.
- Shen, J.M., Wang, C.J. and Jiang, J.J. (1993), Finite Element Method of Reinforced Concrete and Limited Analysis of Plates and Shells, Tsinghua University Press, Beijing, China.
- Tao, Z., Uy, B., Han, L.H. and Wang, Z.B. (2009), "Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression", Thin. Wall. Struct., 47(12), 1544-1556. https://doi.org/10.1016/j.tws.2009.05.006.
- Wang, H.K., Yu, Y., Yu, J.X., Xu, W.P., Chen, H.C., Wang, Z.Y. and Han, M.X. (2019), "Effect of pitting defects on the buckling strength of thick-wall cylinder under axial compression", Constr. Build. Materr., 224, 226-241. https://doi.org/10.1016/j.conbuildmat.2019.07.074.
- Wang, R., Han, L.H. and Hou, C.C. (2013), "Behavior of concrete filled steel tubular (CFST) members under lateral impact: Experiment and FEA model", J. Constr. Steel. Res., 80, 188-201. https://doi.org/10.1016/j.jcsr.2012.09.003.
- Wang, R.H. and Shenoi, R.A. (2019), "Experimental and numerical study on ultimate strength of steel tubular members with pitting corrosion damage", Mar. Struct., 64, 124-137. https://doi.org/10.1016/j.marstruc.2018.11.006.
- Wang, R.H., Guo, H.C. and Shenoi, R.A. (2020), "Experimental and numerical study of localized pitting effect on compressive behavior of tubular members", Mar Struct., 72, 102784. https://doi.org/10.1016/j.marstruc.2020.102784.
- Wang, Y., Qian, X.D., Liew, J.Y.R. and Zhang, M.H. (2015), "Impact of cement composite filled steel tubes: An experimental, numerical and theoretical treatise", Thin. Wall. Struct., 87, 76-88. https://doi.org/10.1016/j.tws.2014.11.007.
- Wang, Y., Qian, X.D., Liew, J.Y.R. and Zhang, M.H. (2016), "A numerical and theoretical investigation on composite pipe-in-pipe structure under impact", Steel. Compos. Struct., 22(5), 1085-1114. https://doi.org/10.12989/scs.2016.22.5.1085.
- Xian, W., Chen, W.S., Hao, H. and Wang, W.D. (2021), "Experimental and numerical studies on square steel-reinforced concrete-filled steel tubular (SRCFST) members subjected to lateral impact", Thin. Wall. Struct., 160, 107409. https://doi.org/10.1016/j.tws.2020.107409.
- Yang, X.Q., Yang, H. and Zhang, S.M. (2020), "Transverse impact behavior of high-strength concrete filled normal-/high-strength square steel tube columns", Int. J. Impact. Eng., 139, 103512. https://doi.org/10.1016/j.ijimpeng.2020.103512.
- Yang, X.Q., Yang, H., Zhang, Z.Q., Zhu, Y. and Lai, Z.C. (2022), "Impact resistance and simplified evaluation method for square CFST members subjected to transverse impact", J. Constr. Steel. Res., 198, 107522. https://doi.org/10.1016/j.jcsr.2022.107522.
- Yang, Y., Xu, T.Y., Qin, J.Y., He, Z., Yu, Q., Su, J. and Zhou, X.F. (2021), "Experimental study on the compression mechanical behaviour of steel pipes with mechanically induced pitting corrosion", Appl. Ocean. Res., 116, 102880. https://doi.org/10.1016/j.apor.2021.102880.
- Yuan, Y., Zhang, N., Liu, H.Q., Zhao, Z.W., Fan, X.T. and Zhang, H.W. (2020), "Influence of random pit corrosion on axial stiffness of thin-walled circular tubes", Structures., 62, 839-846. https://doi.org/10.1016/j.istruc.2020.10.080.
- Zhao, Z.W., Zheng, C.Y., Zhang, J.N., Liang, B. and Zhang, H.W. (2021), "Influence of random pitting corrosion on moment capacity of thin-walled circular tubes subjected to compression force", Int. J. Pres. Ves. Pip., 189, 104260. https://doi.org/10.1016/j.ijpvp.2020.104260.