DOI QR코드

DOI QR Code

Hysteretic model for stud connection in composite structures

  • Xi Qin (School of Civil Engineering, Qingdao University of Technology) ;
  • Guotao Yang (School of Civil Engineering, Qingdao University of Technology)
  • 투고 : 2022.07.10
  • 심사 : 2023.04.24
  • 발행 : 2023.06.10

초록

The establishment of a hysteretic model which can accurately predict the hysteretic characteristics of the stud connection is of utmost importance for the seismic assessment of composite structures. In this paper, the Bouc-Wen-Baber-Noori(BWBN) model was adopted to describe the typical hysteretic characteristics of stud connections. Meanwhile, the Newton-Raphson iterative procedure and the Backward Euler method were used to determine the restoring force, and the Genetic Algorithm was employed to identify the parameters of the BWBN model based on the experimental data consisting of eight specimens. The accuracy of the identified parameters was demonstrated by comparison with the experimental data. Finally, prediction equations for the BWBN model parameters were developed in terms of the physical parameters of stud connections, which provides an approach to get the hysteretic response of stud connections conveniently.

키워드

과제정보

Work for this paper is supported by Natural Science Foundation of China (NSFC) through Grant Nos. 5180081528 and 51978351. Herewith acknowledge with best thanks.

참고문헌

  1. Ataei, A., Zeynalian, M. and Yazdi, Y. (2019), "Cyclic behaviour of bolted shear connectors in steel-concrete composite beams", Eng. Struct., 198, 109455. https://doi.org/10.1016/j.engstruct.2019.109455.
  2. Baber, T.T. and Noori, M.N. (1985), "Random vibration of degrading, pinching systems", J. Eng. Mech., 111(8), 1010-1026. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:8(1010).
  3. Baber, T.T. and Wen, Y.K. (1981), "Random vibration of hysteretic, degrading systems", J. Eng. Mech. Div., 107(6), 1069-1087. https://doi.org/10.1061/JMCEA3.0002768.
  4. Ban, H.Y. and Bradford, M.A. (2013), "Flexural behaviour of composite beams with high strength steel", Eng. Struct., 56(6), 1130-1141. https://doi.org/10.1016/j.engstruct.2013.06.040.
  5. Bouc, R. (1967), "Forced vibrations of mechanical systems with hysteresis", Proceeding Fourth Conf. Nonlinear Oscill., Academia, Publishing House Czechoslovak Academy Sci., Prague, Czechoslovakia.
  6. Bursi, O.S. and Gramola, G. (1999), "Behaviour of headed stud shear connectors under low cycle high amplitude displacements", Mater. Struct., 32(4), 290-297. https://doi.org/10.1007/BF02479599.
  7. Chaparro, B., Thuillier, S., Menezes, L., Manach, P.Y. and Fernandes, J. (2008), "Material parameters identification: gradient-based, genetic and hybrid optimization algorithms", Comput. Mater. Sci., 44(2), 339-346. https://doi.org/10.1016/j.commatsci.2008.03.028.
  8. Chiniforush, A.A., Ataei, A. and Bradford, M.A. (2021), "Experimental study of deconstructable bolt shear connectors subjected to cyclic loading", J. Constr. Steel Res., 183. https://doi.org/10.1016/j.jcsr.2021.106741.
  9. Chwastek, K. and Szczyglowski, J. (2006), "Identification of a hysteresis model parameters with genetic algorithms", Math. Comp. Simulat., 71(3), 206-211. https://doi.org/10.1016/j.matcom.2006.01.002.
  10. Civjan, S.A. and Singh, P. (2003), "Behavior of shear studs subjected to fully reversed cyclic loading", J. Struct. Eng., 129(11), 1466-1474. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:11(1466).
  11. Clough, R.W. (1966), "Effect of stiffness degradation on earthquake ductility requirements", Proceedings Japan Earthq. Eng. Symposium, 227-232.
  12. Deng, W., Xiong, Y., Liu, D. and Zhang, J. (2019), "Static and fatigue behavior of shear connectors for a steel concrete composite girder", J. Constr. Steel Res., 159, 134-146. https://doi.org/10.1016/j.jcsr.2019.04.031.
  13. Dietrich, M.Z., Calenzani, A.F.G. and Fakury, R.H. (2019), "Analysis of rotational stiffness of steel-concrete composite beams for lateral-torsional buckling", Eng. Struct., 198. https://doi.org/10.1016/j.engstruct.2019.109554.
  14. Ding, F.X., Yin, G.A., Wang, H.B., Wang, L.P. and Guo, Q. (2017), "Behavior of headed shear stud connectors subjected to cyclic loading", Steel Compos. Struct., 25(6), 705-716. https://doi.org/10.12989/scs.2017.25.6.705.
  15. GB50017 (2017), Standard for design of steel structures, GB50017-2017, China Building Industry Press, Beijing, China.
  16. GB50901 (2013), Code for construction of steel-concrete composite structures, GB50901-2012, China Building Industry Press, Beijing, China.
  17. Guo, K. and Yang, G. (2020), "Load-slip curves of shear connection in composite Struct.: prediction based on ANNs", Steel Compos. Struct., 36(5), 493-506. https://doi.org/10.12989/scs.2020.36.5.493.
  18. Hawkins, N.M. and Mitchell, D. (1984), "Seismic response of composite shear connections", J. Struct. Eng., 110(9), 2120-2136. https://doi.org/10.1061/(asce)0733-9445(1984)110:9(2120).
  19. Kwon, O.S. and Kammula, V. (2013), "Model updating method for substructure pseudo-dynamic hybrid simulation", Earthq. Eng. Struct. D., 42(13), 1971-1984. https://doi.org/10.1002/eqe.2307.
  20. Li, Z., Albermani, F., Chan, R.W.K. and Kitipornchai, S. (2011), "Pinching hysteretic response of yielding shear panel device", Eng. Struct., 33(3), 993-1000. https://doi.org/10.1016/j.engstruct.2010.12.021.
  21. Li, Z., Noori, M., Zhao, Y., Wan, C., Feng, D. and Altabey, W.A. (2021), "A multi-objective optimization algorithm for BoucWen-Baber-Noori model to identify reinforced concrete columns failing in different modes", Proceedings Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 235(9), 2165-2182. https://doi.org/10.1177/14644207211020028.
  22. Li, Z. and Shu, G. (2019), "Hysteresis characterization and identification of the normalized Bouc-Wen model", Struct. Eng. Mech., 70(2), 209-219. https://doi.org/10.12989/sem.2019.70.2.209.
  23. Lin, Z., Liu, Y. and He, J. (2014), "Behavior of stud connectors under combined shear and tension loads", Eng. Struct., 81, 362-376. https://doi.org/10.1016/j.engstruct.2014.10.016.
  24. Liu, J.P., Zhou, B.X., Yu, J. and Wang, Y.H. (2017a), "Experimental study on mechanical behavior of shear studs in assembled monolithic steel-concrete composite beam", J. Build. Struct., 38, 337-341. https://doi.org/10.14006/j.jzjgxb.2017.S1.047.
  25. Liu, X.P., Bradford, M.A. and Ataei, A. (2017b), "Flexural performance of innovative sustainable composite steelconcrete beams", Eng. Struct., 130, 282-296. https://doi.org/10.1016/j.engstruct.2016.10.009.
  26. Lu, B., Zhai, C., Li, S. and Wen, W. (2019), "Predicting ultimate shear capacities of shear connectors under monotonic and cyclic loadings", Thin-Wall. Struct., 141, 47-61. https://doi.org/10.1016/j.tws.2019.04.002.
  27. Ma, F., Ng, C. and Ajavakom, N. (2006), "On system identification and response prediction of degrading structures", Struct. Control Health Monit., 13(1), 347-364. https://doi.org/10.1002/stc.122.
  28. Maleki, S. and Bagheri, S. (2008), "Behavior of channel shear connectors, part I: experimental study", J. Constr. Steel Res., 64(12), 1333-1340. https://doi.org/10.1016/j.jcsr.2008.01.010.
  29. Mirza, O. and Uy, B. (2010), "Effects of the combination of axial and shear loading on the behaviour of headed stud steel anchors", Eng. Struct., 32(1), 93-105. https://doi.org/10.1016/j.engstruct.2009.08.019.
  30. Nakajima, A., Saiki, I., Kokai, M., Doi, K., Takabayashi, Y. and Ooe, H. (2003), "Cyclic shear force-slip behavior of studs under alternating and pulsating load condition", Eng. Struct., 25(5), 537-545. https://doi.org/10.1016/s0141-0296(02)00165-7.
  31. Ning, C.L., Cheng, Y. and Yu, X.H. (2019a), "A simplified approach to investigate the seismic ductility demand of shearcritical reinforced concrete columns based on experimental calibration", J. Earthq. Eng., 25(10), 1958-1980. https://doi.org/10.1080/13632469.2019.1605949.
  32. Ning, C.L., Wang, L. and Du, W. (2019b), "A practical approach to predict the hysteresis loop of reinforced concrete columns failing in different modes", Constr. Build. Mater., 218, 644-656. https://doi.org/10.1016/j.conbuildmat.2019.05.147.
  33. Nithyadharan, M. and Kalyanaraman, V. (2021), "A new screw connection model and FEA of CFS shear wall panels", J. Constr. Steel Res., 176, 106430. https://doi.org/10.1016/j.jcsr.2020.106430.
  34. Ollgaard, J.G., Slutter, R.G. and Fisher, J.W. (1971), "Shear strength of stud connectors in lightweight and normal weight concrete", AISC Eng. J., 8(2), 55-64.
  35. Ortiz, G.A., Alvarez, D.A. and Bedoya-Ruiz, D. (2015), "Identification of Bouc-Wen type models using the Transitional Markov Chain Monte Carlo method", Comp. Struct., 146, 252-269. https://doi.org/10.1016/j.compstruc.2014.10.012.
  36. Ozcebe, G. and Saatcioglu, M. (1989), "Hysteretic shear model for reinforced concrete members", J. Struct. Eng., 115(1), 132-148. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:1(132).
  37. Pallares, L. and Hajjar, J.F. (2010), "Headed steel stud anchors in composite structures, part II: tension and interaction", J. Constr. Steel Res., 66(2), 213-228. https://doi.org/10.1016/j.jcsr.2009.08.008.
  38. Saari, W.K., Hajjar, J.F., Schultz, A.E. and Shield, C.K. (2004), "Behavior of shear studs in steel frames with reinforced concrete infill walls", J. Constr. Steel Res., 60(10), 1453-1480. https://doi.org/10.1016/j.jcsr.2004.03.003.
  39. Shariati, A., Shariati, M., Ramli Sulong, N.H., Suhatril, M., Arabnejad Khanouki, M.M. and Mahoutian, M. (2014), "Experimental assessment of angle shear connectors under monotonic and fully reversed cyclic loading in high strength concrete", Constr. Build. Mater., 52, 276-283. https://doi.org/10. 1016/j.conbuildmat.2013.11.036. https://doi.org/10.1016/j.conbuildmat.2013.11.036
  40. Shariati, M., Ramli Sulong, N.H., Suhatril, M., Shariati, A., Arabnejad Khanouki, M.M. and Sinaei, H. (2013), "Comparison of behaviour between channel and angle shear connectors under monotonic and fully reversed cyclic loading", Constr. Build. Mater., 38, 582-593. https://doi.org/10.1016/j.conbuildmat.2012.07.050.
  41. Shen, M. and Chung, K.F. (2017), "Structural behaviour of stud shear connections with solid and composite slabs under coexisting shear and tension forces", Struct., 9, 79-90. https://doi.org/10.1016/j.istruc.2016.09.011.
  42. Su, Q.T., Yang, G.T. and Wu, C. (2012), "Experimental investigation on inelastic behavior of composite box girder under negative moment", Int. J. Steel. Struct., 12(1), 71-84. https://doi.org/10.1007/s13296-012-1007-0.
  43. Sucuoglu, H. and Erberik, A. (2004), "Energy-based hysteresis and damage models for deteriorating systems", Earthq. Eng. Struct. D., 33(1), 69-88. https://doi.org/10.1002/eqe.338.
  44. Suppapitnarm, A., Seffen, K.A., Parks, G.T. and Clarkson, P. (2000), "A simulated annealing algorithm for multiobjective optimization", Eng. Optim., 33(1), 59-85. https://doi.org/10.1080/03052150008940911.
  45. Takeda, T., Sozen, M.A. and Nielsen, N.N. (1970), "Reinforced concrete response to simulated earthquakes", J. Struct. Div., 96(12), 2557-2573. https://doi.org/10.1061/JSDEAG.0002765.
  46. Tan, E.L., Varsani, H. and Liao, F. (2019), "Experimental study on demountable steel-concrete connectors subjected to combined shear and tension", Eng. Struct., 183, 110-123. https://doi.org/10.1016/j.engstruct.2018.12.088.
  47. Veletsos, A., Newmark, N. and Chelapati, C. (1965), "Deformation spectra for elastic and elastoplastic systems subjected to ground shock and earthquake motions", Proceedings 3rd World Conf. Earthq. Eng.", 2, 663-682.
  48. Viest, I.M. (1956), "Investigation of stud shear connectors for composite concrete and steel T-beams", J. American Concrete Inst., 27(8), 875-891. Sttps://doi.org/10.14359/11655.
  49. Wang, L., Webster, M.D. and Hajjar, J.F. (2019), "Pushout tests on deconstructable steel-concrete shear connections in sustainable composite beams", J. Constr. Steel Res., 153, 618-637. https://doi.org/10.1016/j.jcsr.2018.10.020.
  50. Wang, Q. (2013), "Experimental research on mechanical behavior and design method of stud connectors", Ph.D. Dissertation, Tongji University, Shanghai, China.
  51. Zhai, C., Lu, B., Wen, W., Ji, D. and Xie, L. (2018), "Experimental study on shear behavior of studs under monotonic and cyclic loadings", J. Constr. Steel Res., 151, 1-11. https://doi.org/10. 1016/j.jcsr.2018.07.029. https://doi.org/10.1016/j.jcsr.2018.07.029