DOI QR코드

DOI QR Code

Real-time wireless marine radioactivity monitoring system using a SiPM-based mobile gamma spectroscopy mounted on an unmanned marine vehicle

  • Min Sun Lee (Environmental Radioactivity Assessment Team, Nuclear Emergency & Environmental Protection Division, Korea Atomic Energy Research Institute) ;
  • Soo Mee Kim (Maritime ICT R&D Center, Korea Institute of Ocean Science & Technology) ;
  • Mee Jang (Environmental Radioactivity Assessment Team, Nuclear Emergency & Environmental Protection Division, Korea Atomic Energy Research Institute) ;
  • Hyemi Cha (Environmental Radioactivity Assessment Team, Nuclear Emergency & Environmental Protection Division, Korea Atomic Energy Research Institute) ;
  • Jung-Min Seo (Maritime ICT R&D Center, Korea Institute of Ocean Science & Technology) ;
  • Seungjae Baek (Maritime ICT R&D Center, Korea Institute of Ocean Science & Technology) ;
  • Jong-Myoung Lim (Environmental Radioactivity Assessment Team, Nuclear Emergency & Environmental Protection Division, Korea Atomic Energy Research Institute)
  • Received : 2022.11.02
  • Accepted : 2023.03.14
  • Published : 2023.06.25

Abstract

Marine radioactivity monitoring is critical for taking immediate action in case of unexpected nuclear accidents at nuclear facilities located near coastal areas. Especially when the level of contamination is not predictable, mobile monitoring systems will be useful for wide-area ocean radiation survey and for determination of the level of radioactivity. Here, we used a silicon photomultiplier and a high-efficiency GAGG crystal to fabricate a compact, battery-powered gamma spectroscopy that can be used in an ocean environment. The developed spectroscopy has compact dimensions of 6.5 × 6.5× 8 cm3 and weighs 560 g. We used LoRa, a low-power wireless protocol for communication. Successful data transmission was achieved within 1.4 m water depth. The developed gamma spectroscopy was able to detect radioactivity from a 137Cs point source (3.7 kBq) at a distance of 20 cm in water. Moreover, we demonstrated an unmanned radioactivity monitoring system in a real sea by combining unmanned surface vehicle with the developed gamma spectroscopy. A hidden 137Cs source (3.07 MBq) was detected by the unmanned system at a distance of 3 m. After successfully testing the developed mobile spectroscopy in an ocean environment, we believe that our proposed system will be an effective solution for mobile real-time marine radioactivity monitoring.

Keywords

Acknowledgement

This work was supported by the KAERI institutional Program (Project No. 521510), National Research Foundation of Korea (Grant No. NRF-2022R1C1C1013092), and was a part of the project titled 'Development of Smart Processing Technology for Sea Foods', funded by the Ministry of Oceans and Fisheries, Korea (Project No.20210671).

References

  1. R. Martincic, Generic Procedures for Monitoring in a Nuclear or Radiological Emergency, IAEA, 1999.
  2. C. Tsabaris, I. Thanos, An underwater sensing system for monitoring radioactivity in the marine environment, Mediterr. Mar. Sci. 5 (2004) 125.
  3. L. Sartini, F. Siemeone, P. Pani, N.L. Bue, G. Marinaro, A. Grubich, A. Lobko, G. Etiope, A. Capone, P. Favali, F. Gasparoni, F. Bruni, GEMS: underwater spectrometer for long-term radioactivity measurements, Nucl. Instrum. Methods A 626 (2011) S145.
  4. C. Tsabaris, C. Bagatelas, T. Dakladas, C.T. Papadopoulos, R. Vlastou, G.T. Chronis, Autonomous NaI(Tl) gamma-ray spectrometer for in situ underwater measurements, Appl. Radiat. Isot. 66 (2008) 1419-1426. https://doi.org/10.1016/j.apradiso.2008.02.064
  5. A. Naumenko, S. Andrukhovich, V. Kabanov, D. Kabanau, Y. Kurochkin, B. Martsynkevich, D. Shouksavy, P. Shpak, Autonomous NaI(Tl) gamma-ray spectrometer for in situ underwater measurements, Nucl. Instrum. Methods A 908 (2018) 97.
  6. J.I. Byun, S.W. Choi, M.H. Song, B.U. Chang, Y.J. Kim, J.Y. Yun, A large buoy-based radioactivity monitoring system for gamma-ray emitters in surface seawater, Appl. Radiat. Isot. 162 (2020) 109172.
  7. C. Tsabaris, E.G. Androulakaki, D. Ballas, S. Alexakis, L. Perivoliotis, A. Iona, Radioactivity monitoring at North Aegean Sea integrating in-situ sensor in an ocean observing platform, J. Mar. Sci. Eng. 9 (2021) 77.
  8. J.I. Byun, J.H. Rho, S.W. Choi, A shipboard real-time gamma-ray measurement system for detecting radionuclides in seawater, Nucl. Instrum. Methods A. 1005 (2021) 165374.
  9. J. Kim, K. Park, J. Hwang, H. Kim, J. Kim, H. Kim, S.H. Jung, Y. Kim, G. Cho, Efficient design of a ∅2×2 inch NaI(Tl) scintillation detector coupled with a SiPM in an aquatic environment, Nucl. Eng. Technol. 51 (2019) 1091-1097. https://doi.org/10.1016/j.net.2019.01.017
  10. J.H. Kim, K.S. Joo, Feasibility of underwater radiation detector using a silicon photomultiplier (SiPM), J. Instrum. 15 (2020) P04013.
  11. J.H. Kim, K.H. Park, K.S. Joo, Development of low-cost, compact, real-time, and wireless radiation monitoring system in underwater environment, Nucl. Eng. Technol. 50 (2018) 801-805. https://doi.org/10.1016/j.net.2018.03.023
  12. J. Lloret, S. Sendra, M. Ardid, J.J.P.C. Rodrigues, Underwater wireless sensor communications in the 2.4 GHz ISM frequency band, Sensors 12 (2012) 4237-4264. https://doi.org/10.3390/s120404237
  13. X. Che, I. Wells, G. Dickers, P. Kear, X. Gong, Re-evaluation of RF electromagnetic communication in underwater sensor networks, IEEE Commun. Mag. 48 (2010) 143-151. https://doi.org/10.1109/MCOM.2010.5673085
  14. M. Carminati, D. Di Vita, G. Morandi, I. D'Adda, C. Fiorini, Handheld magnetic-compliant gamma-ray spectrometer for environmental monitoring and scrap metal screening, Sensors 22 (2022) 1412.
  15. E.M. Becker, A.T. Farsoni, Wireless, low-cost, FPGA-based miniature gamma ray spectrometer, Nucl. Instrum. Methods A 761 (2014) 99-104. https://doi.org/10.1016/j.nima.2014.05.096
  16. P.F. Buckens, M.S. Veatch, A high performance peak-detect & hold circuit for pulse height analysis, IEEE Trans. Nucl. Sci. 39 (1992) 753-757. https://doi.org/10.1109/23.159700
  17. M. Tawalbeh, A. Eardley, L. Tawalbeh, Studying the energy consumption in mobile device, Procedia Comput. Sci. 94 (2016) 183-189. https://doi.org/10.1016/j.procs.2016.08.028
  18. R. Sanchez-Iborra, J. Sanchez-Gomez, J. Ballesta-Vinas, M.-D. Cano, A.F. Skarmeta, Performance evaluation of LoRa considering scenario conditions, Sensors 18 (2018) 772.
  19. A. Dala, T. Arslan, Design, implementation, and measurement procedure of underwater and water surface antenna for LoRa communication, Sensors 21 (2021) 1337.
  20. S. Koo, Y. Song, S.H. Lim, M.H. Oh, S.N. Seo, S. Baek, Development of a remote supervisory control and data acquisition system for offshore waste final disposal facility, JCR (J. Coast. Res.) 90 (2019) 206-213.
  21. L.A. Currie, Limits for qulitative detection and quantitative determination, Anal. Chem. 40 (1986) 586-593. https://doi.org/10.1021/ac60259a007
  22. S. Jan, et al., GATE: a simulation toolkit for PET and SPECT, Phys. Med. Biol. 49 (2004) 4543-4561. https://doi.org/10.1088/0031-9155/49/19/007
  23. G. Hong, S. Kim, S. Lee, C. Chung, A.V. Tkalin, E.L. Chaykovskay, T.F. Hamilton, Artifical radionuclides in the East Sea (Sea of Japan) proper and peter the great bay, Mar. Pollut. Bull. 38 (1999) 933-943. https://doi.org/10.1016/S0025-326X(99)00107-1