DOI QR코드

DOI QR Code

Heavy concrete shielding properties for carbon therapy

  • Jin-Long Wang (Department of Nuclear Physics, China Institute of Atomic Energy) ;
  • Jiade J Lu (Heyou Proton and Heavy Ion Center, Heyou International Hospital) ;
  • Da-Jun Ding (Heyou Proton and Heavy Ion Center, Heyou International Hospital) ;
  • Wen-Hua Jiang (Department of Radiation Sources, Nuclear and Radiation Safety Center) ;
  • Ya-Dong Li (Department of Radiation Sources, Nuclear and Radiation Safety Center) ;
  • Rui Qiu (Department of Engineering Physics, Tsinghua University) ;
  • Hui Zhang (Department of Engineering Physics, Tsinghua University) ;
  • Xiao-Zhong Wang (Research and Design Center, Beijing Cnctchem New Materrials Co., Ltd) ;
  • Huo-Sheng Ruan (Heyou Proton and Heavy Ion Center, Heyou International Hospital) ;
  • Yan-Bing Teng (Engineering Department, Meizhi Meiyu Construction Management Co., Ltd) ;
  • Xiao-Guang Wu (Department of Nuclear Physics, China Institute of Atomic Energy) ;
  • Yun Zheng (Department of Nuclear Physics, China Institute of Atomic Energy) ;
  • Zi-Hao Zhao (Department of Nuclear Physics, China Institute of Atomic Energy) ;
  • Kai-Zhong Liao (Engineering Department, Meizhi Meiyu Construction Management Co., Ltd) ;
  • Huan-Cheng Mai (Engineering Department, Meizhi Meiyu Construction Management Co., Ltd) ;
  • Xiao-Dong Wang (Engineering Infrastructure Department, Heyou International Hospital) ;
  • Ke Peng (Engineering Department, Meizhi Meiyu Construction Management Co., Ltd) ;
  • Wei Wang (Engineering Infrastructure Department, Heyou International Hospital) ;
  • Zhan Tang (Engineering Infrastructure Department, Heyou International Hospital) ;
  • Zhao-Yan Yu (Engineering Infrastructure Department, Heyou International Hospital) ;
  • Zhen Wu (Department of Engineering Physics, Tsinghua University) ;
  • Hong-Hu Song (Department of Engineering Physics, Tsinghua University) ;
  • Shuo-Yang Wei (Department of Engineering Physics, Tsinghua University) ;
  • Sen-Lin Mao (Engineering Infrastructure Department, Heyou International Hospital) ;
  • Jun Xu (Engineering Infrastructure Department, Heyou International Hospital) ;
  • Jing Tao (Research and Design Center, Beijing Cnctchem New Materrials Co., Ltd) ;
  • Min-Qiang Zhang (Research and Design Center, Beijing Cnctchem New Materrials Co., Ltd) ;
  • Xi-Qiang Xue (Research and Design Center, Beijing Cnctchem New Materrials Co., Ltd) ;
  • Ming Wang (Research and Design Center, Beijing Cnctchem New Materrials Co., Ltd)
  • 투고 : 2022.12.21
  • 심사 : 2023.03.02
  • 발행 : 2023.06.25

초록

As medical facilities are usually built at urban areas, special concrete aggregates and evaluation methods are needed to optimize the design of concrete walls by balancing density, thickness, material composition, cost, and other factors. Carbon treatment rooms require a high radiation shielding requirement, as the neutron yield from carbon therapy is much higher than the neutron yield of protons. In this case study, the maximum carbon energy is 430 MeV/u and the maximum current is 0.27 nA from a hybrid particle therapy system. Hospital or facility construction should consider this requirement to design a special heavy concrete. In this work, magnetite is adopted as the major aggregate. Density is determined mainly by the major aggregate content of magnetite, and a heavy concrete test block was constructed for structural tests. The compressive strength is 35.7 MPa. The density ranges from 3.65 g/cm3 to 4.14 g/cm3, and the iron mass content ranges from 53.78% to 60.38% from the 12 cored sample measurements. It was found that there is a linear relationship between density and iron content, and mixing impurities should be the major reason leading to the nonuniform element and density distribution. The effect of this nonuniformity on radiation shielding properties for a carbon treatment room is investigated by three groups of Monte Carlo simulations. Higher density dominates to reduce shielding thickness. However, a higher content of high-Z elements will weaken the shielding strength, especially at a lower dose rate threshold and vice versa. The weakened side effect of a high iron content on the shielding property is obvious at 2.5 µSv=h. Therefore, we should not blindly pursue high Z content in engineering. If the thickness is constrained to 2 m, then the density can be reduced to 3.3 g/cm3, which will save cost by reducing the magnetite composition with 50.44% iron content. If a higher density of 3.9 g/cm3 with 57.65% iron content is selected for construction, then the thickness of the wall can be reduced to 174.2 cm, which will save space for equipment installation.

키워드

과제정보

We would like to express our sincere thanks to Heyou International Hospital for the financial support for this research project. This work was also partly supported by the National Natural Science Foundation of China (U1932209, 11975315, U1867210, and 11905134). We gratefully acknowledge Andrii Rusanov for the user routine application in FLUKA simulations and knowledge about particle physics. The authors kindly acknowledge the great support from AWS engineers Yin-Xiang Li and Xiao-Chen Ye. Many thanks to Ms. Yang from GuangDong Province Research Center for Geoanalysis as she conducted careful measurement of these cored samples and extensive discussion about elemental content with her.

참고문헌

  1. M. Jung, Y soon Lee, S.G. Hong, J. Moon, Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE), Cement Concr. Res. 131 (August 2019) (2020), 106017, https://doi.org/10.1016/j.cemconres.2020.106017.
  2. K.G. Field, I. Remec, Y Le Pape, Radiation effects in concrete for nuclear power plants - Part I: quantification of radiation exposure and radiation effects, Nucl. Eng. Des. 282 (2015) 126-143, https://doi.org/10.1016/j.nucengdes.2014.10.003.
  3. N. Saklani, G. Banwat, B. Spencer, S. Rajan, G. Sant, N. Neithalath, Damage development in neutron-irradiated concrete in a test reactor: hygro-thermal and mechanical simulations, Cement Concr. Res. 142 (November 2020) (2021), 106349, https://doi.org/10.1016/j.cemconres.2020.106349.
  4. A. Pazirandeh, A. Torkamani, A. Taheri, Design and simulation of a neutron source based on an electron linear accelerator for BNCT of skin melanoma, Appl. Radiat. Isot. 69 (5) (2011) 749-755, https://doi.org/10.1016/j.apradiso.2011.01.035.
  5. R.P. Addendum, PTCOG report 1 PTCOG publications sub-committee task group on shielding design and radiation safety of charged particle therapy facilities, addendum 1 (Reference 1) (2009) 1-3.
  6. T. Elsasser, W.K. Weyrather, T. Friedrich, et al., Quantification of the relative biological effectiveness for ion beam radiotherapy: direct experimental comparison of proton and carbon ion beams and a novel approach for treatment planning, Int. J. Radiat. Oncol. Biol. Phys. 78 (4) (2010) 1177-1183, https://doi.org/10.1016/j.ijrobp.2010.05.014.
  7. C.P. Karger, P. Peschke, RBE and related modeling in carbon-ion therapy, Phys. Med. Biol. 63 (1) (2018), https://doi.org/10.1088/1361-6560/aa9102.
  8. T.D. Malouff, A. Mahajan, S. Krishnan, C. Beltran, D.S. Seneviratne, D.M. Trifiletti, Carbon ion therapy: a modern review of an emerging technology, Front. Oncol. (2020;10(February) 1-13, https://doi.org/10.3389/fonc.2020.00082.
  9. Y. Iwata, T. Furukawa, K. Mizushima, et al., Multiple-energy operation with Quasi-DC extension of flattops at HIMAC, in: IPAC 2010 - 1st Int Part Accel Conf, 2010, pp. 79-81. Published online.
  10. Newhauser WD, Zhang R. The physics of proton therapy. Phys. Med. Biol.. 155: R155. doi:10.1088/0031-9155/60/8/R155.
  11. J. Smeets, F. Roellinghoff, D. Prieels, et al., Prompt gamma imaging with a slit camera for real-time range control in proton therapy, Phys. Med. Biol. 57 (11) (2012) 3371-3405, https://doi.org/10.1088/0031-9155/57/11/3371.
  12. P. Magalhaes Martins, R. Dal Bello, B. Ackermann, et al., PIBS: proton and ion beam spectroscopy for in vivo measurements of oxygen, carbon, and calcium concentrations in the human body, Sci. Rep. 10 (1) (2020) 1-14, https://doi.org/10.1038/s41598-020-63215-0.
  13. C. Robert, G. Dedes, G. Battistoni, et al., Distributions of secondary particles in proton and carbon-ion therapy: a comparison between GATE/Geant4 and FLUKA Monte Carlo codes, Phys. Med. Biol. 58 (9) (2013) 2879-2899, https://doi.org/10.1088/0031-9155/58/9/2879.
  14. M. Nyarku, R.S. Keshavamurthy, V.D. Subramanian, A. Haridas, E.T. Glover, Experimental neutron attenuation measurements in possible fast reactor shield materials, Ann. Nucl. Energy 53 (2013) 135-139, https://doi.org/10.1016/j.anucene.2012.10.019.
  15. R.H. Thomas, NCRP 144 - Radiation Protection for Particle Accelerator Facilities, 2005 papers3://publication/uuid/4123806B-8FCA-4425-A048-AE9C3084FAF5.
  16. I. Akkurt, A.M. El-khayatt, Annals of Nuclear Energy the effect of barite proportion on neutron and gamma-ray shielding, Ann. Nucl. Energy 51 (2013) 5-9, https://doi.org/10.1016/j.anucene.2012.08.026.
  17. T. Gupta, S.N. Sachdeva, Laboratory investigation and modeling of concrete pavements containing AOD steel slag, Cement Concr. Res. 124 (May) (2019), 105808, https://doi.org/10.1016/j.cemconres.2019.105808.
  18. R. Kucer, N. Kucer, Neutron shielding properties of concretes containing boron carbide and ferro e boron, Procedia - Soc Behav Sci. 195 (2015) 1752-1756, https://doi.org/10.1016/j.sbspro.2015.06.320.
  19. I. Akkurt, H. Aky, B. Mavi, S. Kilincarslan, C. Basyigit, Radiation shielding of concrete containing zeolite 45 (2010) 827-830, https://doi.org/10.1016/j.radmeas.2010.04.012.
  20. J. Kazjonovs, D. Bajare, A. Korjakins, Designing of high density concrete by using steel treatment waste, 10th Int Conf Mod Build Mater Struct Tech. (2010) 138-142. January 2010.
  21. B. Aygun, E. S, akar, O. Agar, M.I. Sayyed, A. Karabulut, V.P. Singh, Development of new heavy concretes containing chrome-ore for nuclear radiation shielding applications, Prog. Nucl. Energy 133 (January) (2021), https://doi.org/10.1016/j.pnucene.2021.103645.
  22. I. Akkurt, C. Basyigit, S. Kilincarslan, B. Mavi, A. Akkurt, Radiation shielding of concretes containing different aggregates, Cem. Concr. Compos. 28 (2) (2006) 153-157, https://doi.org/10.1016/j.cemconcomp.2005.09.006.
  23. H. Baltas, M. Sirin, A. Celik, Ustabas, A.M. El-Khayatt, Radiation shielding properties of mortars with minerals and ores additives, Cem. Concr. Compos. (2019;97(January) 268-278, https://doi.org/10.1016/j.cemconcomp.2019.01.006.
  24. S. Ozen, C. Sengul, T. Erenoglu, u. Colak, I.A. Reyhancan, Properties of heavyweight concrete for structural and radiation shielding purposes, Arabian J. Sci. Eng. 41 (4) (2016) 1573-1584, https://doi.org/10.1007/s13369-015-1868-6.
  25. C. Thomas, J. Rico, P. Tamayo, F. Ballester, J. Setien, J.A. Polanco, Effect of elevated temperature on the mechanical properties and microstructure of heavy-weight magnetite concrete with steel fibers, Cem. Concr. Compos. 103 (May) (2019) 80-88, https://doi.org/10.1016/j.cemconcomp.2019.04.029.
  26. Y. Esen, Z.M. Dogan, Evaluation of physical and mechanical characteristics of siderite concrete to be used as heavy-weight concrete, Cem. Concr. Compos. 82 (2017) 117-127, https://doi.org/10.1016/j.cemconcomp.2017.05.009.
  27. M. Ramadan, M.S. Amin, S.A. Waly, A. Mohsen, Effect of high gamma radiation dosage and elevated temperature on the mechanical performance of sustainable alkali-activated composite as a cleaner product, Cem. Concr. Compos. 121 (April) (2021), 104087, https://doi.org/10.1016/j.cemconcomp.2021.104087.
  28. GB18871-2002. Basic standards for protection against ionizing radiation and for the safety of radiation source. Chinese Stand.
  29. G. Concord, Investigation of a Monte Carlo model of scanning nozzle, Chinese J Med Phys 36 (9) (2019), https://doi.org/10.3969/j.issn.1005-202X.2019.09.002.
  30. M.H. Kharita, S. Yousef, M. Alnassar, Review on the addition of boron compounds to radiation shielding concrete, Prog. Nucl. Energy 53 (2) (2011) 207-211, https://doi.org/10.1016/j.pnucene.2010.09.012.
  31. E.S.A. Waly, M.A. Bourham, Comparative study of different concrete composition as gamma-ray shielding materials, Ann. Nucl. Energy 85 (2015) 306-310, https://doi.org/10.1016/j.anucene.2015.05.011.
  32. B. Oto, A. Gur, E. Kavaz, T. Cakir, N. Yaltay, Determination of gamma and fast neutron shielding parameters of magnetite concretes, Prog. Nucl. Energy 92 (2016) 71-80, https://doi.org/10.1016/j.pnucene.2016.06.011.
  33. T. Shams, M. Eftekhar, A. Shirani, Investigation of gamma radiation attenuation in heavy concrete shields containing hematite and barite aggregates in multi-layered and mixed forms, Construct. Build. Mater. 182 (2018) 35-42, https://doi.org/10.1016/j.conbuildmat.2018.06.032.
  34. B. Aygun, Neutron and gamma radiation shielding properties of high-temperature-resistant heavy concretes including chromite and wolframite, J Radiat Res Appl Sci 12 (1) (2019) 352-359, https://doi.org/10.1080/16878507.2019.1672312.
  35. Rinard P. Neutron Interactions with Matter Reference.
  36. S. Agosteo, G. Arduini, G. Bodei, et al., Shielding calculations for a 250 MeV hospital-based proton accelerator, Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 374 (2) (1996) 254-268, https://doi.org/10.1016/0168-9002(96)00017-4.
  37. S. Agosteo, T. Nakamura, M. Silari, Z. Zajacova, Attenuation curves in concrete of neutrons from 100 to 400 MeV per nucleon He, C, Ne, Ar, Fe and Xe ions on various targets, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 217 (2) (2004) 221-236, https://doi.org/10.1016/j.nimb.2003.10.010.
  38. S. Agosteo, M. Magistris, A. Mereghetti, M. Silari, Z. Zajacova, Shielding data for 100-250 MeV proton accelerators: double differential neutron distributions and attenuation in concrete, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 265 (2) (2007) 581-598, https://doi.org/10.1016/j.nimb.2007.09.046.
  39. S. Agosteo, M. Magistris, A. Mereghetti, M. Silari, Z. Zajacova, Shielding data for 100-250 MeV proton accelerators: attenuation of secondary radiation in thick iron and concrete/iron shields, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 266 (15) (2008) 3406-3416, https://doi.org/10.1016/j.nimb.2008.05.002.
  40. B. Mukherjee, Radiation Shielding of a 230 MeV Proton Cyclotron for Cancer Therapy WPE Is Located within the Campus of Universit A Tsklinikum Essen, 2009;(August.
  41. S. Agosteo, M. Magistris, M. Silari, Shielding of proton accelerators, Radiat. Protect. Dosim. 146 (4) (2011) 414-424, https://doi.org/10.1093/rpd/ncr237.
  42. W. Proceedings, U. States, Accelerators , Target and Irradiation Facilities - SATIF 12 S Hielding Aspects of. 2015, April 2014.
  43. Y. Hashimoto, Medical accelerator facility, J. Natl. Def. Med. Coll. 14 (2) (1989) 80-85.
  44. T. Urban, J. Kluson, Shielding calculation for the proton-therapy-center in prague, Czech republic, Radioprotection 47 (4) (2012) 583-597, https://doi.org/10.1051/radiopro/2012029.
  45. J. Xu, X. Xia, G.H. Wang, J. Lv, Radiation calculations for advanced proton therapy facility, in: IPAC 2013 Proc 4th Int Part Accel Conf, 2013, pp. 3201-3203. Published online.
  46. J.L. Wang, L.A. Cruz, Q.B. Wu, Q. Wang, Y. Wei, H.K. Wang, Radiation shielding design of a compact single-room proton therapy based on synchrotron, Nucl. Sci. Tech. 31 (1) (2020), https://doi.org/10.1007/s41365-019-0712-1.
  47. A.D. Wrixon, New ICRP recommendations, J. Radiol. Prot. 28 (2) (2008) 161-168, https://doi.org/10.1088/0952-4746/28/2/R02.
  48. GBZT201.2-2015, Radiation shielding requirements for radiotherapy room - Part 2: radiotherapy room of electron linear accelerators, Chinese Stand (2015).
  49. A. Ferrari, P.R. Sala, A. Fasso, J. Ranft, FLUKA: A Multi-Particle Transport Code, vol. 773, 2005.
  50. T.T. Bohlen, F. Cerutti, M.P.W. Chin, et al., The FLUKA Code: developments and challenges for high energy and medical applications, Nucl. Data Sheets 120 (2014) 211-214, https://doi.org/10.1016/j.nds.2014.07.049.
  51. W.S. Kozlowska, T.T. Bohlen, C. Cuccagna, et al., FLUKA particle therapy tool for Monte Carlo independent calculation of scanned proton and carbon ion beam therapy, Phys. Med. Biol. 64 (7) (2019), https://doi.org/10.1088/1361-6560/ab02cb.
  52. J.L. Wang, L.A. Cruz, M. Lu, Pixelated prompt gamma imaging detector for online measurement of proton beam: Monte Carlo feasibility study by FLUKA, Radiat Detect Technol Methods 2 (1) (2018), https://doi.org/10.1007/s41605-017-0032-0.
  53. V. Vlachoudis, FLAIR : A POWERFUL but USER FRIENDLY GRAPHICAL INTERFACE for FLUKA FLAIR : A POWERFUL but USER FRIENDLY GRAPHICAL INTERFACE for FLUKA Vlachoudis V. 2016, April 2009.
  54. C. Theis, K.H. Buchegger, M. Brugger, D. Forkel-Wirth, S. Roesler, H. Vincke, Interactive three-dimensional visualization and creation of geometries for Monte Carlo calculations, Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 562 (2) (2006) 827-829, https://doi.org/10.1016/j.nima.2006.02.125.
  55. J. Wang, X. Wu, Z. Li, et al., Prompt Gamma Spectroscopy Retrieval Algorithm for Element and Density Measurements Accelerated by Cloud Computing, 2022;(November, https://doi.org/10.3389/fphy.2022.961162.
  56. N.M. Azreen, R.S.M. Rashid, M. Haniza, Y.L. Voo, Y.H. Mugahed Amran, Radiation shielding of ultra-high-performance concrete with silica sand, amang and lead glass, Construct. Build. Mater. 172 (2018) 370-377, https://doi.org/10.1016/j.conbuildmat.2018.03.243.
  57. P. Richard, M. Cheyrezy, Composition of reactive powder concretes, Cement Concr. Res. 25 (7) (1995) 1501-1511, https://doi.org/10.1016/0008-8846(95)00144-2.
  58. GB/T6730.65-, Iron Ores - Determination of Total Iron Content - Titanium (III) Chloride Reduction Potassium Dichromate Titration Methods, 2009. Published online 2019.
  59. O. Gencel, A. Bozkurt, E. Kam, T. Korkut, Determination and calculation of gamma and neutron shielding characteristics of concretes containing different hematite proportions, Ann. Nucl. Energy 38 (12) (2011) 2719-2723, https://doi.org/10.1016/j.anucene.2011.08.010.