과제정보
We would like to express our sincere thanks to Heyou International Hospital for the financial support for this research project. This work was also partly supported by the National Natural Science Foundation of China (U1932209, 11975315, U1867210, and 11905134). We gratefully acknowledge Andrii Rusanov for the user routine application in FLUKA simulations and knowledge about particle physics. The authors kindly acknowledge the great support from AWS engineers Yin-Xiang Li and Xiao-Chen Ye. Many thanks to Ms. Yang from GuangDong Province Research Center for Geoanalysis as she conducted careful measurement of these cored samples and extensive discussion about elemental content with her.
참고문헌
- M. Jung, Y soon Lee, S.G. Hong, J. Moon, Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE), Cement Concr. Res. 131 (August 2019) (2020), 106017, https://doi.org/10.1016/j.cemconres.2020.106017.
- K.G. Field, I. Remec, Y Le Pape, Radiation effects in concrete for nuclear power plants - Part I: quantification of radiation exposure and radiation effects, Nucl. Eng. Des. 282 (2015) 126-143, https://doi.org/10.1016/j.nucengdes.2014.10.003.
- N. Saklani, G. Banwat, B. Spencer, S. Rajan, G. Sant, N. Neithalath, Damage development in neutron-irradiated concrete in a test reactor: hygro-thermal and mechanical simulations, Cement Concr. Res. 142 (November 2020) (2021), 106349, https://doi.org/10.1016/j.cemconres.2020.106349.
- A. Pazirandeh, A. Torkamani, A. Taheri, Design and simulation of a neutron source based on an electron linear accelerator for BNCT of skin melanoma, Appl. Radiat. Isot. 69 (5) (2011) 749-755, https://doi.org/10.1016/j.apradiso.2011.01.035.
- R.P. Addendum, PTCOG report 1 PTCOG publications sub-committee task group on shielding design and radiation safety of charged particle therapy facilities, addendum 1 (Reference 1) (2009) 1-3.
- T. Elsasser, W.K. Weyrather, T. Friedrich, et al., Quantification of the relative biological effectiveness for ion beam radiotherapy: direct experimental comparison of proton and carbon ion beams and a novel approach for treatment planning, Int. J. Radiat. Oncol. Biol. Phys. 78 (4) (2010) 1177-1183, https://doi.org/10.1016/j.ijrobp.2010.05.014.
- C.P. Karger, P. Peschke, RBE and related modeling in carbon-ion therapy, Phys. Med. Biol. 63 (1) (2018), https://doi.org/10.1088/1361-6560/aa9102.
- T.D. Malouff, A. Mahajan, S. Krishnan, C. Beltran, D.S. Seneviratne, D.M. Trifiletti, Carbon ion therapy: a modern review of an emerging technology, Front. Oncol. (2020;10(February) 1-13, https://doi.org/10.3389/fonc.2020.00082.
- Y. Iwata, T. Furukawa, K. Mizushima, et al., Multiple-energy operation with Quasi-DC extension of flattops at HIMAC, in: IPAC 2010 - 1st Int Part Accel Conf, 2010, pp. 79-81. Published online.
- Newhauser WD, Zhang R. The physics of proton therapy. Phys. Med. Biol.. 155: R155. doi:10.1088/0031-9155/60/8/R155.
- J. Smeets, F. Roellinghoff, D. Prieels, et al., Prompt gamma imaging with a slit camera for real-time range control in proton therapy, Phys. Med. Biol. 57 (11) (2012) 3371-3405, https://doi.org/10.1088/0031-9155/57/11/3371.
- P. Magalhaes Martins, R. Dal Bello, B. Ackermann, et al., PIBS: proton and ion beam spectroscopy for in vivo measurements of oxygen, carbon, and calcium concentrations in the human body, Sci. Rep. 10 (1) (2020) 1-14, https://doi.org/10.1038/s41598-020-63215-0.
- C. Robert, G. Dedes, G. Battistoni, et al., Distributions of secondary particles in proton and carbon-ion therapy: a comparison between GATE/Geant4 and FLUKA Monte Carlo codes, Phys. Med. Biol. 58 (9) (2013) 2879-2899, https://doi.org/10.1088/0031-9155/58/9/2879.
- M. Nyarku, R.S. Keshavamurthy, V.D. Subramanian, A. Haridas, E.T. Glover, Experimental neutron attenuation measurements in possible fast reactor shield materials, Ann. Nucl. Energy 53 (2013) 135-139, https://doi.org/10.1016/j.anucene.2012.10.019.
- R.H. Thomas, NCRP 144 - Radiation Protection for Particle Accelerator Facilities, 2005 papers3://publication/uuid/4123806B-8FCA-4425-A048-AE9C3084FAF5.
- I. Akkurt, A.M. El-khayatt, Annals of Nuclear Energy the effect of barite proportion on neutron and gamma-ray shielding, Ann. Nucl. Energy 51 (2013) 5-9, https://doi.org/10.1016/j.anucene.2012.08.026.
- T. Gupta, S.N. Sachdeva, Laboratory investigation and modeling of concrete pavements containing AOD steel slag, Cement Concr. Res. 124 (May) (2019), 105808, https://doi.org/10.1016/j.cemconres.2019.105808.
- R. Kucer, N. Kucer, Neutron shielding properties of concretes containing boron carbide and ferro e boron, Procedia - Soc Behav Sci. 195 (2015) 1752-1756, https://doi.org/10.1016/j.sbspro.2015.06.320.
- I. Akkurt, H. Aky, B. Mavi, S. Kilincarslan, C. Basyigit, Radiation shielding of concrete containing zeolite 45 (2010) 827-830, https://doi.org/10.1016/j.radmeas.2010.04.012.
- J. Kazjonovs, D. Bajare, A. Korjakins, Designing of high density concrete by using steel treatment waste, 10th Int Conf Mod Build Mater Struct Tech. (2010) 138-142. January 2010.
- B. Aygun, E. S, akar, O. Agar, M.I. Sayyed, A. Karabulut, V.P. Singh, Development of new heavy concretes containing chrome-ore for nuclear radiation shielding applications, Prog. Nucl. Energy 133 (January) (2021), https://doi.org/10.1016/j.pnucene.2021.103645.
- I. Akkurt, C. Basyigit, S. Kilincarslan, B. Mavi, A. Akkurt, Radiation shielding of concretes containing different aggregates, Cem. Concr. Compos. 28 (2) (2006) 153-157, https://doi.org/10.1016/j.cemconcomp.2005.09.006.
- H. Baltas, M. Sirin, A. Celik, Ustabas, A.M. El-Khayatt, Radiation shielding properties of mortars with minerals and ores additives, Cem. Concr. Compos. (2019;97(January) 268-278, https://doi.org/10.1016/j.cemconcomp.2019.01.006.
- S. Ozen, C. Sengul, T. Erenoglu, u. Colak, I.A. Reyhancan, Properties of heavyweight concrete for structural and radiation shielding purposes, Arabian J. Sci. Eng. 41 (4) (2016) 1573-1584, https://doi.org/10.1007/s13369-015-1868-6.
- C. Thomas, J. Rico, P. Tamayo, F. Ballester, J. Setien, J.A. Polanco, Effect of elevated temperature on the mechanical properties and microstructure of heavy-weight magnetite concrete with steel fibers, Cem. Concr. Compos. 103 (May) (2019) 80-88, https://doi.org/10.1016/j.cemconcomp.2019.04.029.
- Y. Esen, Z.M. Dogan, Evaluation of physical and mechanical characteristics of siderite concrete to be used as heavy-weight concrete, Cem. Concr. Compos. 82 (2017) 117-127, https://doi.org/10.1016/j.cemconcomp.2017.05.009.
- M. Ramadan, M.S. Amin, S.A. Waly, A. Mohsen, Effect of high gamma radiation dosage and elevated temperature on the mechanical performance of sustainable alkali-activated composite as a cleaner product, Cem. Concr. Compos. 121 (April) (2021), 104087, https://doi.org/10.1016/j.cemconcomp.2021.104087.
- GB18871-2002. Basic standards for protection against ionizing radiation and for the safety of radiation source. Chinese Stand.
- G. Concord, Investigation of a Monte Carlo model of scanning nozzle, Chinese J Med Phys 36 (9) (2019), https://doi.org/10.3969/j.issn.1005-202X.2019.09.002.
- M.H. Kharita, S. Yousef, M. Alnassar, Review on the addition of boron compounds to radiation shielding concrete, Prog. Nucl. Energy 53 (2) (2011) 207-211, https://doi.org/10.1016/j.pnucene.2010.09.012.
- E.S.A. Waly, M.A. Bourham, Comparative study of different concrete composition as gamma-ray shielding materials, Ann. Nucl. Energy 85 (2015) 306-310, https://doi.org/10.1016/j.anucene.2015.05.011.
- B. Oto, A. Gur, E. Kavaz, T. Cakir, N. Yaltay, Determination of gamma and fast neutron shielding parameters of magnetite concretes, Prog. Nucl. Energy 92 (2016) 71-80, https://doi.org/10.1016/j.pnucene.2016.06.011.
- T. Shams, M. Eftekhar, A. Shirani, Investigation of gamma radiation attenuation in heavy concrete shields containing hematite and barite aggregates in multi-layered and mixed forms, Construct. Build. Mater. 182 (2018) 35-42, https://doi.org/10.1016/j.conbuildmat.2018.06.032.
- B. Aygun, Neutron and gamma radiation shielding properties of high-temperature-resistant heavy concretes including chromite and wolframite, J Radiat Res Appl Sci 12 (1) (2019) 352-359, https://doi.org/10.1080/16878507.2019.1672312.
- Rinard P. Neutron Interactions with Matter Reference.
- S. Agosteo, G. Arduini, G. Bodei, et al., Shielding calculations for a 250 MeV hospital-based proton accelerator, Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 374 (2) (1996) 254-268, https://doi.org/10.1016/0168-9002(96)00017-4.
- S. Agosteo, T. Nakamura, M. Silari, Z. Zajacova, Attenuation curves in concrete of neutrons from 100 to 400 MeV per nucleon He, C, Ne, Ar, Fe and Xe ions on various targets, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 217 (2) (2004) 221-236, https://doi.org/10.1016/j.nimb.2003.10.010.
- S. Agosteo, M. Magistris, A. Mereghetti, M. Silari, Z. Zajacova, Shielding data for 100-250 MeV proton accelerators: double differential neutron distributions and attenuation in concrete, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 265 (2) (2007) 581-598, https://doi.org/10.1016/j.nimb.2007.09.046.
- S. Agosteo, M. Magistris, A. Mereghetti, M. Silari, Z. Zajacova, Shielding data for 100-250 MeV proton accelerators: attenuation of secondary radiation in thick iron and concrete/iron shields, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 266 (15) (2008) 3406-3416, https://doi.org/10.1016/j.nimb.2008.05.002.
- B. Mukherjee, Radiation Shielding of a 230 MeV Proton Cyclotron for Cancer Therapy WPE Is Located within the Campus of Universit A Tsklinikum Essen, 2009;(August.
- S. Agosteo, M. Magistris, M. Silari, Shielding of proton accelerators, Radiat. Protect. Dosim. 146 (4) (2011) 414-424, https://doi.org/10.1093/rpd/ncr237.
- W. Proceedings, U. States, Accelerators , Target and Irradiation Facilities - SATIF 12 S Hielding Aspects of. 2015, April 2014.
- Y. Hashimoto, Medical accelerator facility, J. Natl. Def. Med. Coll. 14 (2) (1989) 80-85.
- T. Urban, J. Kluson, Shielding calculation for the proton-therapy-center in prague, Czech republic, Radioprotection 47 (4) (2012) 583-597, https://doi.org/10.1051/radiopro/2012029.
- J. Xu, X. Xia, G.H. Wang, J. Lv, Radiation calculations for advanced proton therapy facility, in: IPAC 2013 Proc 4th Int Part Accel Conf, 2013, pp. 3201-3203. Published online.
- J.L. Wang, L.A. Cruz, Q.B. Wu, Q. Wang, Y. Wei, H.K. Wang, Radiation shielding design of a compact single-room proton therapy based on synchrotron, Nucl. Sci. Tech. 31 (1) (2020), https://doi.org/10.1007/s41365-019-0712-1.
- A.D. Wrixon, New ICRP recommendations, J. Radiol. Prot. 28 (2) (2008) 161-168, https://doi.org/10.1088/0952-4746/28/2/R02.
- GBZT201.2-2015, Radiation shielding requirements for radiotherapy room - Part 2: radiotherapy room of electron linear accelerators, Chinese Stand (2015).
- A. Ferrari, P.R. Sala, A. Fasso, J. Ranft, FLUKA: A Multi-Particle Transport Code, vol. 773, 2005.
- T.T. Bohlen, F. Cerutti, M.P.W. Chin, et al., The FLUKA Code: developments and challenges for high energy and medical applications, Nucl. Data Sheets 120 (2014) 211-214, https://doi.org/10.1016/j.nds.2014.07.049.
- W.S. Kozlowska, T.T. Bohlen, C. Cuccagna, et al., FLUKA particle therapy tool for Monte Carlo independent calculation of scanned proton and carbon ion beam therapy, Phys. Med. Biol. 64 (7) (2019), https://doi.org/10.1088/1361-6560/ab02cb.
- J.L. Wang, L.A. Cruz, M. Lu, Pixelated prompt gamma imaging detector for online measurement of proton beam: Monte Carlo feasibility study by FLUKA, Radiat Detect Technol Methods 2 (1) (2018), https://doi.org/10.1007/s41605-017-0032-0.
- V. Vlachoudis, FLAIR : A POWERFUL but USER FRIENDLY GRAPHICAL INTERFACE for FLUKA FLAIR : A POWERFUL but USER FRIENDLY GRAPHICAL INTERFACE for FLUKA Vlachoudis V. 2016, April 2009.
- C. Theis, K.H. Buchegger, M. Brugger, D. Forkel-Wirth, S. Roesler, H. Vincke, Interactive three-dimensional visualization and creation of geometries for Monte Carlo calculations, Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 562 (2) (2006) 827-829, https://doi.org/10.1016/j.nima.2006.02.125.
- J. Wang, X. Wu, Z. Li, et al., Prompt Gamma Spectroscopy Retrieval Algorithm for Element and Density Measurements Accelerated by Cloud Computing, 2022;(November, https://doi.org/10.3389/fphy.2022.961162.
- N.M. Azreen, R.S.M. Rashid, M. Haniza, Y.L. Voo, Y.H. Mugahed Amran, Radiation shielding of ultra-high-performance concrete with silica sand, amang and lead glass, Construct. Build. Mater. 172 (2018) 370-377, https://doi.org/10.1016/j.conbuildmat.2018.03.243.
- P. Richard, M. Cheyrezy, Composition of reactive powder concretes, Cement Concr. Res. 25 (7) (1995) 1501-1511, https://doi.org/10.1016/0008-8846(95)00144-2.
- GB/T6730.65-, Iron Ores - Determination of Total Iron Content - Titanium (III) Chloride Reduction Potassium Dichromate Titration Methods, 2009. Published online 2019.
- O. Gencel, A. Bozkurt, E. Kam, T. Korkut, Determination and calculation of gamma and neutron shielding characteristics of concretes containing different hematite proportions, Ann. Nucl. Energy 38 (12) (2011) 2719-2723, https://doi.org/10.1016/j.anucene.2011.08.010.