DOI QR코드

DOI QR Code

Numerical Simulation of Orifice Injection Characteristics of High Temperature Aviation Fuel

고온 항공유의 오리피스 인젝터 분사특성 수치해석

  • 황성록 (부경대학교 대학원 기계공학과) ;
  • 이형주 (부경대학교 기계공학전공)
  • Received : 2023.06.05
  • Accepted : 2023.06.20
  • Published : 2023.06.30

Abstract

This study presents a numerical simulation investigating hydrodynamic characteristics of high-temperature hydrocarbon aviation fuel injected through a plain orifice injector. The analysis encompassed the temperature range up to the critical point, and the obtained results were compared with prior experimental observations. The analysis unveiled that the injector's exit pressure remains equivalent to the ambient pressure when the fuel injection temperature is below the boiling point. However, when the fuel temperature surpasses the boiling point, the exit pressure of the injector transitions to the saturated vapor pressure corresponding to the fuel injection temperature. Consequently, the exit pressure of the injector increases in tandem with the rapid increase of the saturation vapor pressure due to escalating fuel temperatures. This rise in the exit pressure necessitates a proportional increase in fuel injection pressure to ensure a fixed fuel mass flow rate. Furthermore, the investigation revealed that the discharge coefficient obtained by applying the exit pressure instead of the ambient pressure did exhibit no decrease, but rather was maintained at a nearly constant value, comparable to its level below the boiling point.

Keywords

Acknowledgement

본 연구는 부경대학교 자율창의학술연구비(2022년)에 의하여 수행되었습니다.

References

  1. S. Luo, D. Xu, J. Song and J. Liu, "A review of regenerative cooling technologies for scramjets," Applied Thermal Engineer-ing, Vol. 190, 2021, 116754.
  2. P. N. Rao and D. Kunzru, "Thermal cracking of JP-10: Kinetics and product distribution," Journal of Analytical and Applied Pyrolysis, Vol. 76, 2006, pp. 154~160. https://doi.org/10.1016/j.jaap.2005.10.003
  3. D. Huang, Z. Wu, B. Sunden and W. Li, "A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress," Applied Energy, Vol. 162, 2016, pp. 494~505. https://doi.org/10.1016/j.apenergy.2015.10.080
  4. T. Edwards, "USAF Supercritical hydrocarbon fuels interest," 1993, AIAA 93-0807.
  5. D. R. Sobel and L. J. Spadaccini, "Hydrocarbon fuel cooling technologies for advanced propulsion," ASME Journal of Engineering for Gas Turbines and Power, Vol. 119, 1997, pp. 344~351. https://doi.org/10.1115/1.2815581
  6. H. J. Lee, Y.-I. Jin, H. Choi and K.-Y. Hwang, "Hydraulic characterization of high temperature hydrocarbon liquid jets," International Journal of Heat and Fluid Flow, Vol. 65, 2017, pp. 166~176. https://doi.org/10.1016/j.ijheatfluidflow.2017.04.007
  7. J. Bae, H. J. Lee, H. Choi and D.-C. Park, "Hydraulic and internal flow characteristics of swirling superheated hydrocarbon liquid jets," International Journal of Heat and Mass Transfer, Vol. 137, 2019, pp. 1014~1026. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.006
  8. X. F. Wang and A. H. Lefebvre, "Influence of fuel temperature on atomization performance of pressure-swirl atomizers," Journal of Propulsion, Vol. 4, No. 3, 1988, pp. 222~227. https://doi.org/10.2514/3.23052
  9. J. A. Gasner, R. C. Foster and C. Fujimura, "Evaluation of thermal management for a Mach 5.5 hypersonic vehicle," 1992, AIAA 92-3721.
  10. M. Cooper and J. E. Shepherd, "Thermal and catalytic cracking of JP-10 for pulse detonation engine applications," GALCIT Report FM 2002.002, Caltech, 2002.
  11. H. J. Lee, H. Choi, K.-Y. Hwang, D.-C. Park and S. Min, "Numerical study of choked cavitation in high temperature hydrocarbon liquid jets," International Journal of Heat and Fluid Flow, Vol. 68, 2017, pp. 114~125. https://doi.org/10.1016/j.ijheatfluidflow.2017.10.001
  12. H. J. Lee, H. Choi and D.-C. Park, "Hydraulic characteristics of high temperature hydrocarbon liquid jets with various orifice geometries," Acta Astronautica, Vol. 152, 2018, pp. 657~666. https://doi.org/10.1016/j.actaastro.2018.09.001
  13. H. J. Lee, H. Choi, K.-Y. Hwang, D.-C. Park and S. Min, "Effect of nozzle inlet geometry in high temperature hydrocarbon liquid jets," International Journal of Heat and Fluid Flow, Vol. 74, 2018, pp. 1~14. https://doi.org/10.1016/j.ijheatfluidflow.2018.09.004
  14. Y.-I. Jin, H. J. Lee, K.-Y. Hwang, D.-C. Park and S. Min, "Flashing injection of high temperature hydrocarbon liquid jets," Experimental Thermal and Fluid Science, Vol. 90, 2018, pp. 200~211. https://doi.org/10.1016/j.expthermflusci.2017.09.016
  15. I. Kim, H. Choi and H. J. Lee, "Experimental study of hydrocarbon aviation fuel jets at high temperatures up to the critical point," International Journal of Heat and Mass Transfer, Vol. 206, 2023, 123952.
  16. M. L. Huber, NIST thermophysical properties of hydrocarbon mixtures database (SUPERTRAPP) Version 3.2 User's Guide, NIST, 2007.
  17. S. Hwang and H. J. Lee, "Investigation on a prediction methodology of thermodynamic properties of supercritical hydrocarbon aviation fuels," Journal of ILASS-KOREA, Vol. 26, No. 4, 2021, pp. 171~181.
  18. S. Hwang and H. J. Lee, "Comparison and evaluation of transport property prediction performance of supercritical hydrocarbon aviation fuels and their pyrolyzed products via endothermic reactions," Energies, 2023, submitted and under review.
  19. M. Cismondi and J. Mollerup, "Development and application of a three-parameter RK-PR equation of state," Fluid Phase Equilibria, Vol. 232, 2005, pp. 74~89. https://doi.org/10.1016/j.fluid.2005.03.020
  20. S. K. Kim, H. S. Choi and Y. Kim, "Thermodynamic modeling based on a generalized cubic equation of state for kerosene/LOx rocket combustion," Combustion and Flame, Vol. 159, 2012, pp. 1351~1365. https://doi.org/10.1016/j.combustflame.2011.10.008
  21. B. E. Polling, J. M. Prausnitz and J. P. O'Connell, The Properties of Gases and Liquids, 5th ed., McGraw-Hill Education Press, New York, U.S.A., 2001.
  22. T.-H. Chung, M. Ajlan, L. L. Lee and K. E. Starling, "Generalized multiparameter correlation for nonpolar and polar fluid transport properties," Industrial and Engineering Chemistry Research, Vol. 27, 1988, pp. 671~679. https://doi.org/10.1021/ie00076a024
  23. J. F. Ely, "A predictive, exact shape factor extended corresponding states model for mixtures," Advances in Cryogenic Engineering, Vol. 35, 1990, pp. 1511~1520.
  24. J. Millat, J. H. Dymond and C. A. Nieto de Castro, Transport Properties of Fluids, Their Correlation, Prediction and Estimation, IUPAC, Cambridge University Press, 1996.
  25. S. Hwang, H. J. Lee and W. Park, "Prediction of transport properties of hydrocarbon aviation fuels using TRAPP methods," International Journal of Aeronautical and Space Sciences, 2023, in press.
  26. Coordinating Research Council, Handbook of Aviation Fuel Properties, 3rd ed., CRC Report No. 635, 2004.
  27. ANSYS Inc., ANSYS FLUENT Customization Manual, Canonsburg, PA, 2021.