DOI QR코드

DOI QR Code

Fermented sea tangle (Laminaria japonica Aresch) Accelerates Osteoblast Differentiation in murine osteoblastic MC3T3-E1 Cells

MC3T3-E1 골아세포에서 발효 다시마 추출물에 의한 조골세포 분화의 촉진

  • Nara Jeong (Anti-Aging Research Center, Dong-eui University) ;
  • Yung Hyun Choi (Anti-Aging Research Center, Dong-eui University)
  • 정나라 (동의대학교 항노화연구소) ;
  • 최영현 (동의대학교 항노화연구소)
  • Received : 2023.05.15
  • Accepted : 2023.05.29
  • Published : 2023.06.30

Abstract

The Laminaria japonica Aresch (Sea tangle) belongs to the brown algae and has a long history as a food material in Asia, including Korea. Recent studies have found that the fermented Sea tangle extract (FST) inhibited the differentiation of osteoclasts and protected osteoblasts from oxidative damage. This study aims to explore the possibility that FST can induce the differentiation of osteoblasts and identify the responsible mechanism. According to our results, FST induced differentiation into osteogenic cells in the presence of osteoblastic MC3T3-E1 cells under non-toxic conditions.. This finding was confirmed by phalloidin staining, increased alkaline phosphatase activity, and calcium deposition. Additionally, it was found that this process was achieved by increasing the expression of key factors involved in osteoblast differentiation, such as runt-related transcription factor-2, osterix, β-catenin, and bone morphogenetic protein-2. Moreover, FST increased autophagy, which may contribute to the maintenance of the bone formation homeostasis, and is associated with the activation of the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase signaling pathways. Although further research about the bioactive substances contained in FST and the tests of their efficacy are required, the results of this study indicate that FST has incredible applicability as a functional material for maintaining the bone homeostasis.

Keywords

References

  1. Suzuki, A., Minamide, M., Iwaya, C., Ogata, K., Iwata, J. 2020. Role of metabolism in bone development and homeostasis. Int. J. Mol. Sci. 21, 8992.
  2. Florencio-Silva, R., Sasso, G. R., Sasso-Cerri, E., Simoes, M. J., Cerri, P. S. 2015. Biology of bone tissue: Structure, function, and factors that influence bone cells. Biomed. Res. Int. 2015, 421746.
  3. Song, S., Guo, Y., Yang, Y., Fu, D. 2022. Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol. Ther. 237, 108168.
  4. Martiniakova, M., Babikova, M., Omelka, R. 2020. Pharm acological agents and natural compounds: available treat ments for osteoporosis. J. Physiol. Pharmacol. 71, 307-320.
  5. Arora, S., Cooper, P. R., Ratnayake, J. T., Friedlander, L. T., Rizwan, S. B., Seo, B., Hussaini, H. M. 2022. A critical review of in vitro research methodologies used to study mineralization in human dental pulp cell cultures. Int. Endod. J. 55 (Suppl 1), 3-13.
  6. Patel, U., Macri-Pellizzeri, L., Zakir Hossain, K. M., Scam mell, B. E., Grant, D. M., Scotchford, C. A., Hannon, A. C., Kennedy, A. R., Barney, E. R., Ahmed, I., Sottile, V. 2019. In vitro cellular testing of strontium/calcium substituted phosphate glass discs and microspheres shows potential for bone regeneration. J. Tissue Eng. Regen. Med. 13, 396-405. https://doi.org/10.1002/term.2796
  7. Kobayashi, Y., Uehara, S., Koide, M., Takahashi, N. 2015. The regulation of osteoclast differentiation by Wnt signals. Bonekey Rep. 4, 713.
  8. Kobayashi, Y., Uehara, S., Udagawa, N., Takahashi, N. 2016. Regulation of bone metabolism by Wnt signals. J. Biochem. 159, 387-392. https://doi.org/10.1093/jb/mvv124
  9. Yin, X., Zhou, C. C., Li, J. T., Liu, R. K., Shi, B., Yuan, Q., Zou, S. J. 2019. Autophagy in bone homeostasis and the onset of osteoporosis. Bone Res. 7, 28.
  10. Zhang, K., Liu, F. W., Jin, D. 2019. Autophagy preserves the osteogenic ability of periodontal ligament stem cells under high glucose conditions in rats. Arch. Oral. Biol. 101, 172-179. https://doi.org/10.1016/j.archoralbio.2019.03.020
  11. Franceschi, R. T., Ge, C. 2017. Control of the osteoblast lineage by mitogen-activated protein kinase signaling. Curr. Mol. Biol. Rep. 3, 122-132. https://doi.org/10.1007/s40610-017-0059-5
  12. Greenblatt MB, Shim JH, Glimcher LH. Mitogen-activat ed protein kinase pathways in osteoblasts. Annu Rev Cell Dev Biol. 2013; 29: 63-79. https://doi.org/10.1146/annurev-cellbio-101512-122347
  13. El-Desoky, A. H. H., Tsukamoto, S. 2022. Marine natural products that inhibit osteoclastogenesis and promote osteoblast differentiation. J. Nat. Med. 76, 575-583. https://doi.org/10.1007/s11418-022-01622-5
  14. Zhao, X., Patil, S., Xu, F., Lin, X., Qian, A. 2021. Role of biomolecules in osteoclasts and their therapeutic potential for osteoporosis. Biomolecules 11, 747.
  15. Raut, N., Wicks, S. M., Lawal, T. O., Mahady, G. B. 2019. Epigenetic regulation of bone remodeling by natural compounds. Pharmacol. Res. 147, 104350.
  16. Jeong, J. W., Ji, S. Y., Lee, H., Hong, S. H., Kim, G. Y., Park, C., Lee, B. J., Park, E. K., Hyun, J. W., Jeon, Y. J., Choi, Y. H. 2019. Fermented sea tangle (Laminari a japonica Aresch) suppresses RANKL-induced osteocla stogenesis by scavenging ROS in RAW 264.7 cells. Foods 8, 290.
  17. Kim, S. Y., Cha, H. J., Hwangbo, H., Park, C., Lee, H., Song, K. S., Shim, J. H., Noh, J. S., Kim, H. S., Lee, B. J., Kim, S., Kim, G. Y., Jeon, Y. J., Choi, Y. H. 2021. Protection against oxidative stress-induced apoptosis by fermented sea tangle (Laminaria japonica Aresch) in osteoblastic MC3T3-E1 cells through activation of Nrf2 signaling pathway. Foods 10, 2807.
  18. Tao, H., Ge, G., Liang, X., Zhang, W., Sun, H., Li, M., Geng, D. 2020. ROS signaling cascades: Dual regulations for osteoclast and osteoblast. Acta. Biochim. Biophys. Sin. 52, 1055-1062. https://doi.org/10.1093/abbs/gmaa098
  19. Domazetovic, V., Marcucci, G., Iantomasi, T., Brandi, M. L., Vincenzini, M. T. 2017. Oxidative stress in bone remodeling: Role of antioxidants. Clin. Cases Miner. Bone Metab. 14, 209-216. https://doi.org/10.11138/ccmbm/2017.14.1.209
  20. Agidigbi, T. S., Kim, C. 2019. Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS-mediated osteoclast diseases. Int. J. Mol. Sci. 20, 3576.
  21. Choi, W. C., Reid, S. N. S., Ryu, J. K., Kim, Y., Jo, Y. H., Jeon, B. H. 2016. Effects of γ-aminobutyric acidenriched fermented sea tangle (Laminaria japonica) on brain derived neurotrophic factor-related muscle growth and lipolysis in middle aged women. Algae 31, 175-187. https://doi.org/10.4490/algae.2016.31.6.12
  22. Melak, M., Plessner, M., Grosse, R. 2017. Actin visualization at a glance. J. Cell Sci. 130, 525-530. https://doi.org/10.1242/jcs.189068
  23. Khan, A. U., Qu, R., Fan, T., Ouyang, J., Dai, J. 2020. A glance on the role of actin in osteogenic and adipogenic differentiation of mesenchymal stem cells. Stem Cell Res. Ther. 11, 283.
  24. Rodriguez, J. P., Gonzalez, M., Rios, S., Cambiazo, V. 2004. Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation. J. Cell. Biochem. 93, 721-731. https://doi.org/10.1002/jcb.20234
  25. Xu, G., Shen, C., Lin, H., Zhou, J., Wang, T., Wan, B., Binshabaib, M., Forouzanfar, T., Xu, G., Alharbi, N., Wu, G. 2022. Development, in-vitro characterization and in-vivo osteoinductive efficacy of a novel biomimetically-precipitated nanocrystalline calcium phosphate with internally-incorporated bone morphogenetic protein-2. Front. Bioeng. Biotechnol. 10, 920696.
  26. Chen, L., Shi, K., Frary, C. E., Ditzel, N., Hu, H., Qiu, W., Kassem, M. 2015. Inhibiting actin depolymerization enhances osteoblast differentiation and bone formation in human stromal stem cells. Stem Cell Res. 15, 281-289. https://doi.org/10.1016/j.scr.2015.06.009
  27. Badila, A. E., Radulescu, D. M., Ilie, A., Niculescu, A. G., Grumezescu, A. M., Radulescu, A. R. 2022. Bone regeneration and oxidative stress: An updated overview. Antioxidants (Basel) 11, 318.
  28. Shahi, M., Peymani, A, 2017. Sahmani M. Regulation of bone metabolism. Rep. Biochem. Mol. Biol. 5, 73-82.
  29. Nishimura, R., Hata, K., Nakamura, E., Murakami, T., Takahata, Y. 2018. Transcriptional network systems in cartilage development and disease. Histochem. Cell. Biol. 149, 353-363. https://doi.org/10.1007/s00418-017-1628-7
  30. Lin, D. P. L., Carnagarin, R., Dharmarajan, A., Dass, C. R. 2017. Transdifferentiation of myoblasts into osteob lasts - Possible use for bone therapy. J. Pharm. Pharmacol. 69, 1661-1671. https://doi.org/10.1111/jphp.12790
  31. Ryoo, H. M., Lee, M. H., Kim, Y. J. 2006. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene 366, 51-57. https://doi.org/10.1016/j.gene.2005.10.011
  32. Kroemer, G., Marino, G., Levine, B. 2010. Autophagy and the integrated stress response. Mol. Cell 40, 280-293. https://doi.org/10.1016/j.molcel.2010.09.023
  33. Yoshii, S. R., Mizushima, N. 2017. Monitoring and measuring autophagy. Int. J. Mol. Sci. 18, 1865.
  34. Tanida, I. 2011. Autophagosome formation and molecular mechanism of autophagy. Antioxid. Redox Signal. 14, 2201-2214. https://doi.org/10.1089/ars.2010.3482
  35. Park, J. M., Huang, S., Wu, T. T., Foster, N. R., Sinicrope, F. A. 2013. Prognostic impact of Beclin 1, p62/sequestosome 1 and LC3 protein expression in colon carcinoma s from patients receiving 5-fluorouracil as adjuvant chem otherapy. Cancer Biol. Ther. 14, 100-107. https://doi.org/10.4161/cbt.22954
  36. Li, D. Y., Yu, J. C., Xiao, L., Miao, W., Ji, K., Wang, S. C., Geng, Y. X. 2017. Autophagy attenuates the oxidative stress-induced apoptosis of Mc3T3-E1 osteoblasts. Eur. Rev. Med. Pharmacol. Sci. 21, 5548-5556.
  37. Bartolome, A., Lopez-Herradon, A., Portal-Nunez, S., Garcia-Aguilar, A., Esbrit, P., Benito, M., Guillen, C. 2013. Autophagy impairment aggravates the inhibitory effects of high glucose on osteoblast viability and function. Biochem. J. 455, 329-337. https://doi.org/10.1042/BJ20130562
  38. Lai, E. H., Hong, C. Y., Kok, S. H., Hou, K. L., Chao, L. H., Lin, L. D., Chen, M. H., Wu, P. H., Lin, S. K. 2012. Simvastatin alleviates the progression of periapical lesions by modulating autophagy and apoptosis in osteoblasts. J. Endod. 38, 757-763. https://doi.org/10.1016/j.joen.2012.02.023
  39. Zhang, S., Shen, S., Ma, P., Fan, D. 2022. Biochemical targets and molecular mechanism of ginsenoside compound K in treating osteoporosis based on network pharmacology. Int. J. Mol. Sci. 23, 13921.
  40. Cheng, Y. H., Dong, J. C., Bian, Q. 2019. Small molecul es for mesenchymal stem cell fate determination. World J. Stem Cells 11, 1084-1103. https://doi.org/10.4252/wjsc.v11.i12.1084
  41. Hipskind, R. A., Bilbe, G. 1998. MAP kinase signaling cascades and gene expression in osteoblasts. Front. Biosci. 3, d804-816. https://doi.org/10.2741/A323
  42. Takeno, A., Kanazawa, I., Tanaka, K. I., Notsu, M., Sugimoto, T. 2019. Phloretin suppresses bone morphogenetic protein-2-induced osteoblastogenesis and mineralization via inhibition of phosphatidylinositol 3-kinases/Akt pathway. Int. J. Mol. Sci. 20, 2481.
  43. Ghosh-Choudhury, N., Abboud, S. L., Nishimura, R., Celeste, A., Mahimainathan, L., Choudhury, G. G. 2002. Requirement of BMP-2-induced phosphatidylinositol 3-kinase and Akt serine/threonine kinase in osteoblast differentiation and Smad-dependent BMP-2 gene transcription. J. Biol. Chem. 277, 33361-33368. https://doi.org/10.1074/jbc.M205053200
  44. Songjang, W., Nensat, C., Tohtong, R., Suthiphongchai, T., Phimsen, S., Rattanasinganchan, P., Metheenukul, P., Kasekarn, W., Jiraviriyakul, A. 2022. Porcine placenta extract induced Akt, ERK, and JNK signaling to heighte n the osteogenic activity of human osteoblasts. J. App. Pharm. Sci. 12, 18-25.
  45. Salasznyk, R. M., Klees, R. F., Hughlock, M. K., Plopper, G. E. 2004. ERK signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells on collagen I and vitronectin. Cell Commun. Adhes. 11, 137-153. https://doi.org/10.1080/15419060500242836
  46. Reid, S. N. S., Ryu, J. K., Kim, Y., Jeon, B. H. 2018. GABA-enriched fermented Laminaria japonica improves cognitive impairment and neuroplasticity in scopolamine- and ethanol-induced dementia model mice. Nutr. Res. Pract. 12, 199-207. https://doi.org/10.4162/nrp.2018.12.3.199
  47. Molagoda, I. M. N., Athapaththu, A. M. G. K., Park, E. K., Choi, Y. H., Jeon, Y. J., Kim, G. Y. 2022. Fermented oyster (Crassostrea gigas) extract cures and prevents prednisolone-induced bone resorption by activating osteoblast differentiation. Foods 11, 678.
  48. Li, H., Wu, Y., Huang, N., Zhao, Q., Yuan, Q., Shao, B. 2020. γ-Aminobutyric acid promotes osteogenic differentiation of mesenchymal stem cells by inducing TNFA IP3. Curr. Gene Ther. 20, 152-161.  https://doi.org/10.2174/1566523220999200727122502