References
- Suzuki, A., Minamide, M., Iwaya, C., Ogata, K., Iwata, J. 2020. Role of metabolism in bone development and homeostasis. Int. J. Mol. Sci. 21, 8992.
- Florencio-Silva, R., Sasso, G. R., Sasso-Cerri, E., Simoes, M. J., Cerri, P. S. 2015. Biology of bone tissue: Structure, function, and factors that influence bone cells. Biomed. Res. Int. 2015, 421746.
- Song, S., Guo, Y., Yang, Y., Fu, D. 2022. Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol. Ther. 237, 108168.
- Martiniakova, M., Babikova, M., Omelka, R. 2020. Pharm acological agents and natural compounds: available treat ments for osteoporosis. J. Physiol. Pharmacol. 71, 307-320.
- Arora, S., Cooper, P. R., Ratnayake, J. T., Friedlander, L. T., Rizwan, S. B., Seo, B., Hussaini, H. M. 2022. A critical review of in vitro research methodologies used to study mineralization in human dental pulp cell cultures. Int. Endod. J. 55 (Suppl 1), 3-13.
- Patel, U., Macri-Pellizzeri, L., Zakir Hossain, K. M., Scam mell, B. E., Grant, D. M., Scotchford, C. A., Hannon, A. C., Kennedy, A. R., Barney, E. R., Ahmed, I., Sottile, V. 2019. In vitro cellular testing of strontium/calcium substituted phosphate glass discs and microspheres shows potential for bone regeneration. J. Tissue Eng. Regen. Med. 13, 396-405. https://doi.org/10.1002/term.2796
- Kobayashi, Y., Uehara, S., Koide, M., Takahashi, N. 2015. The regulation of osteoclast differentiation by Wnt signals. Bonekey Rep. 4, 713.
- Kobayashi, Y., Uehara, S., Udagawa, N., Takahashi, N. 2016. Regulation of bone metabolism by Wnt signals. J. Biochem. 159, 387-392. https://doi.org/10.1093/jb/mvv124
- Yin, X., Zhou, C. C., Li, J. T., Liu, R. K., Shi, B., Yuan, Q., Zou, S. J. 2019. Autophagy in bone homeostasis and the onset of osteoporosis. Bone Res. 7, 28.
- Zhang, K., Liu, F. W., Jin, D. 2019. Autophagy preserves the osteogenic ability of periodontal ligament stem cells under high glucose conditions in rats. Arch. Oral. Biol. 101, 172-179. https://doi.org/10.1016/j.archoralbio.2019.03.020
- Franceschi, R. T., Ge, C. 2017. Control of the osteoblast lineage by mitogen-activated protein kinase signaling. Curr. Mol. Biol. Rep. 3, 122-132. https://doi.org/10.1007/s40610-017-0059-5
- Greenblatt MB, Shim JH, Glimcher LH. Mitogen-activat ed protein kinase pathways in osteoblasts. Annu Rev Cell Dev Biol. 2013; 29: 63-79. https://doi.org/10.1146/annurev-cellbio-101512-122347
- El-Desoky, A. H. H., Tsukamoto, S. 2022. Marine natural products that inhibit osteoclastogenesis and promote osteoblast differentiation. J. Nat. Med. 76, 575-583. https://doi.org/10.1007/s11418-022-01622-5
- Zhao, X., Patil, S., Xu, F., Lin, X., Qian, A. 2021. Role of biomolecules in osteoclasts and their therapeutic potential for osteoporosis. Biomolecules 11, 747.
- Raut, N., Wicks, S. M., Lawal, T. O., Mahady, G. B. 2019. Epigenetic regulation of bone remodeling by natural compounds. Pharmacol. Res. 147, 104350.
- Jeong, J. W., Ji, S. Y., Lee, H., Hong, S. H., Kim, G. Y., Park, C., Lee, B. J., Park, E. K., Hyun, J. W., Jeon, Y. J., Choi, Y. H. 2019. Fermented sea tangle (Laminari a japonica Aresch) suppresses RANKL-induced osteocla stogenesis by scavenging ROS in RAW 264.7 cells. Foods 8, 290.
- Kim, S. Y., Cha, H. J., Hwangbo, H., Park, C., Lee, H., Song, K. S., Shim, J. H., Noh, J. S., Kim, H. S., Lee, B. J., Kim, S., Kim, G. Y., Jeon, Y. J., Choi, Y. H. 2021. Protection against oxidative stress-induced apoptosis by fermented sea tangle (Laminaria japonica Aresch) in osteoblastic MC3T3-E1 cells through activation of Nrf2 signaling pathway. Foods 10, 2807.
- Tao, H., Ge, G., Liang, X., Zhang, W., Sun, H., Li, M., Geng, D. 2020. ROS signaling cascades: Dual regulations for osteoclast and osteoblast. Acta. Biochim. Biophys. Sin. 52, 1055-1062. https://doi.org/10.1093/abbs/gmaa098
- Domazetovic, V., Marcucci, G., Iantomasi, T., Brandi, M. L., Vincenzini, M. T. 2017. Oxidative stress in bone remodeling: Role of antioxidants. Clin. Cases Miner. Bone Metab. 14, 209-216. https://doi.org/10.11138/ccmbm/2017.14.1.209
- Agidigbi, T. S., Kim, C. 2019. Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS-mediated osteoclast diseases. Int. J. Mol. Sci. 20, 3576.
- Choi, W. C., Reid, S. N. S., Ryu, J. K., Kim, Y., Jo, Y. H., Jeon, B. H. 2016. Effects of γ-aminobutyric acidenriched fermented sea tangle (Laminaria japonica) on brain derived neurotrophic factor-related muscle growth and lipolysis in middle aged women. Algae 31, 175-187. https://doi.org/10.4490/algae.2016.31.6.12
- Melak, M., Plessner, M., Grosse, R. 2017. Actin visualization at a glance. J. Cell Sci. 130, 525-530. https://doi.org/10.1242/jcs.189068
- Khan, A. U., Qu, R., Fan, T., Ouyang, J., Dai, J. 2020. A glance on the role of actin in osteogenic and adipogenic differentiation of mesenchymal stem cells. Stem Cell Res. Ther. 11, 283.
- Rodriguez, J. P., Gonzalez, M., Rios, S., Cambiazo, V. 2004. Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation. J. Cell. Biochem. 93, 721-731. https://doi.org/10.1002/jcb.20234
- Xu, G., Shen, C., Lin, H., Zhou, J., Wang, T., Wan, B., Binshabaib, M., Forouzanfar, T., Xu, G., Alharbi, N., Wu, G. 2022. Development, in-vitro characterization and in-vivo osteoinductive efficacy of a novel biomimetically-precipitated nanocrystalline calcium phosphate with internally-incorporated bone morphogenetic protein-2. Front. Bioeng. Biotechnol. 10, 920696.
- Chen, L., Shi, K., Frary, C. E., Ditzel, N., Hu, H., Qiu, W., Kassem, M. 2015. Inhibiting actin depolymerization enhances osteoblast differentiation and bone formation in human stromal stem cells. Stem Cell Res. 15, 281-289. https://doi.org/10.1016/j.scr.2015.06.009
- Badila, A. E., Radulescu, D. M., Ilie, A., Niculescu, A. G., Grumezescu, A. M., Radulescu, A. R. 2022. Bone regeneration and oxidative stress: An updated overview. Antioxidants (Basel) 11, 318.
- Shahi, M., Peymani, A, 2017. Sahmani M. Regulation of bone metabolism. Rep. Biochem. Mol. Biol. 5, 73-82.
- Nishimura, R., Hata, K., Nakamura, E., Murakami, T., Takahata, Y. 2018. Transcriptional network systems in cartilage development and disease. Histochem. Cell. Biol. 149, 353-363. https://doi.org/10.1007/s00418-017-1628-7
- Lin, D. P. L., Carnagarin, R., Dharmarajan, A., Dass, C. R. 2017. Transdifferentiation of myoblasts into osteob lasts - Possible use for bone therapy. J. Pharm. Pharmacol. 69, 1661-1671. https://doi.org/10.1111/jphp.12790
- Ryoo, H. M., Lee, M. H., Kim, Y. J. 2006. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene 366, 51-57. https://doi.org/10.1016/j.gene.2005.10.011
- Kroemer, G., Marino, G., Levine, B. 2010. Autophagy and the integrated stress response. Mol. Cell 40, 280-293. https://doi.org/10.1016/j.molcel.2010.09.023
- Yoshii, S. R., Mizushima, N. 2017. Monitoring and measuring autophagy. Int. J. Mol. Sci. 18, 1865.
- Tanida, I. 2011. Autophagosome formation and molecular mechanism of autophagy. Antioxid. Redox Signal. 14, 2201-2214. https://doi.org/10.1089/ars.2010.3482
- Park, J. M., Huang, S., Wu, T. T., Foster, N. R., Sinicrope, F. A. 2013. Prognostic impact of Beclin 1, p62/sequestosome 1 and LC3 protein expression in colon carcinoma s from patients receiving 5-fluorouracil as adjuvant chem otherapy. Cancer Biol. Ther. 14, 100-107. https://doi.org/10.4161/cbt.22954
- Li, D. Y., Yu, J. C., Xiao, L., Miao, W., Ji, K., Wang, S. C., Geng, Y. X. 2017. Autophagy attenuates the oxidative stress-induced apoptosis of Mc3T3-E1 osteoblasts. Eur. Rev. Med. Pharmacol. Sci. 21, 5548-5556.
- Bartolome, A., Lopez-Herradon, A., Portal-Nunez, S., Garcia-Aguilar, A., Esbrit, P., Benito, M., Guillen, C. 2013. Autophagy impairment aggravates the inhibitory effects of high glucose on osteoblast viability and function. Biochem. J. 455, 329-337. https://doi.org/10.1042/BJ20130562
- Lai, E. H., Hong, C. Y., Kok, S. H., Hou, K. L., Chao, L. H., Lin, L. D., Chen, M. H., Wu, P. H., Lin, S. K. 2012. Simvastatin alleviates the progression of periapical lesions by modulating autophagy and apoptosis in osteoblasts. J. Endod. 38, 757-763. https://doi.org/10.1016/j.joen.2012.02.023
- Zhang, S., Shen, S., Ma, P., Fan, D. 2022. Biochemical targets and molecular mechanism of ginsenoside compound K in treating osteoporosis based on network pharmacology. Int. J. Mol. Sci. 23, 13921.
- Cheng, Y. H., Dong, J. C., Bian, Q. 2019. Small molecul es for mesenchymal stem cell fate determination. World J. Stem Cells 11, 1084-1103. https://doi.org/10.4252/wjsc.v11.i12.1084
- Hipskind, R. A., Bilbe, G. 1998. MAP kinase signaling cascades and gene expression in osteoblasts. Front. Biosci. 3, d804-816. https://doi.org/10.2741/A323
- Takeno, A., Kanazawa, I., Tanaka, K. I., Notsu, M., Sugimoto, T. 2019. Phloretin suppresses bone morphogenetic protein-2-induced osteoblastogenesis and mineralization via inhibition of phosphatidylinositol 3-kinases/Akt pathway. Int. J. Mol. Sci. 20, 2481.
- Ghosh-Choudhury, N., Abboud, S. L., Nishimura, R., Celeste, A., Mahimainathan, L., Choudhury, G. G. 2002. Requirement of BMP-2-induced phosphatidylinositol 3-kinase and Akt serine/threonine kinase in osteoblast differentiation and Smad-dependent BMP-2 gene transcription. J. Biol. Chem. 277, 33361-33368. https://doi.org/10.1074/jbc.M205053200
- Songjang, W., Nensat, C., Tohtong, R., Suthiphongchai, T., Phimsen, S., Rattanasinganchan, P., Metheenukul, P., Kasekarn, W., Jiraviriyakul, A. 2022. Porcine placenta extract induced Akt, ERK, and JNK signaling to heighte n the osteogenic activity of human osteoblasts. J. App. Pharm. Sci. 12, 18-25.
- Salasznyk, R. M., Klees, R. F., Hughlock, M. K., Plopper, G. E. 2004. ERK signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells on collagen I and vitronectin. Cell Commun. Adhes. 11, 137-153. https://doi.org/10.1080/15419060500242836
- Reid, S. N. S., Ryu, J. K., Kim, Y., Jeon, B. H. 2018. GABA-enriched fermented Laminaria japonica improves cognitive impairment and neuroplasticity in scopolamine- and ethanol-induced dementia model mice. Nutr. Res. Pract. 12, 199-207. https://doi.org/10.4162/nrp.2018.12.3.199
- Molagoda, I. M. N., Athapaththu, A. M. G. K., Park, E. K., Choi, Y. H., Jeon, Y. J., Kim, G. Y. 2022. Fermented oyster (Crassostrea gigas) extract cures and prevents prednisolone-induced bone resorption by activating osteoblast differentiation. Foods 11, 678.
- Li, H., Wu, Y., Huang, N., Zhao, Q., Yuan, Q., Shao, B. 2020. γ-Aminobutyric acid promotes osteogenic differentiation of mesenchymal stem cells by inducing TNFA IP3. Curr. Gene Ther. 20, 152-161. https://doi.org/10.2174/1566523220999200727122502