DOI QR코드

DOI QR Code

갯완두(Lathyrus japonicus) 에탄올 추출물의 항산화 및 항염증 효능

Antioxidant and anti-inflammatory activities of Lathyrus japonicus ethanol extracts

  • Yun Gyeong Park (National Marine Biodiversity Institute of Korea) ;
  • Myeong Seok Lee (National Marine Biodiversity Institute of Korea) ;
  • Seok-Chun Ko (National Marine Biodiversity Institute of Korea) ;
  • Jeong Min Lee (National Marine Biodiversity Institute of Korea) ;
  • Mi-Jin Yim (National Marine Biodiversity Institute of Korea) ;
  • Kyung Woo Kim (National Marine Biodiversity Institute of Korea) ;
  • Hyun-Soo Kim (National Marine Biodiversity Institute of Korea) ;
  • Ji-Yul Kim (National Marine Biodiversity Institute of Korea) ;
  • Chul Hwan Kim (National Marine Biodiversity Institute of Korea) ;
  • Jung Hye Won (National Marine Biodiversity Institute of Korea) ;
  • Dae-Sung Lee (National Marine Biodiversity Institute of Korea) ;
  • Gun-Woo Oh (National Marine Biodiversity Institute of Korea)
  • 투고 : 2023.03.04
  • 심사 : 2023.03.13
  • 발행 : 2023.06.30

초록

In the present study, the antioxidant and anti-inflammatory activities of ethanolic extracts from Lathyrus japonicus at concentrations of 50, 100, and 200 ㎍/mL were investigated in LPS-stimulated, RAW264.7 cells. Antioxidant properties were determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assays and ferric reducing antioxidant power assay. In addition, the production of reactive oxygen species (ROS) was measured using the 2',7'-dichlorofluorescein diacetate (DCFH-DA) probe by flow cytometry. To examine the anti-inflammatory activity of the extracts of L. japonicus, their effects on the levels of nitric oxide (NO); production of cytokines such as interleukin (IL)-1β, IL-10, and tumor necrosis factor-α (TNF-α); and the activities of enzymes such as inducible NOS (iNOS) and cyclooxygenase-2 (COX-2) were assessed. The IC50 values of the DPPH and ABTS radical scavenging assays were 476.09 ± 1.50 and 34.91 ± 0.37 ㎍/mL, respectively. In addition, L. japonicus extracts not only inhibited ROS production, but also the production of NO, IL-1β, and IL-10, and the activity of iNOS in a dose-dependent manner. In summary, the ethanolic extracts of L. japonicus could be used as a functional food additive and an anti-inflammatory agent owing to their antioxidant and anti-inflammatory activities

키워드

과제정보

이 논문은 2023년 국립해양생물자원관 재원으로 지원을 받아 수행된 연구임(2023M00500).

참고문헌

  1. Ohtsuki, T., Setoguchi, H. 2011. Geographical differentiation in leaf thickness between coastal and freshwater populations of the coastal plant Lathyrus japonicus (Fabaceae). Bull. Natl. Sci. Mus. Ser. B 37, 127-132. 
  2. Ohtsuki, T., Murai, Y., Iwashina, T., Setoguchi, H. 2013. Geographical differentiation inferred from flavonoid content between coastal and freshwater populations of the coastal plant Lathyrus japonicus (Fabaceae). Biochem. Syst. Ecol. 51, 243-250.  https://doi.org/10.1016/j.bse.2013.09.004
  3. Nakai, Z., Kondo, T., Akimoto, S. 2011. Parasitoid attack of the seed-feeding beetle Bruchus loti enhances the germination success of Lathyrus japonicus seeds. Arthropod Plant Interact. 5, 227-234.  https://doi.org/10.1007/s11829-011-9132-9
  4. Ohtsuki, T., Kaneko, Y., Setoguchi, H. 2011. Isolated history of the coastal plant Lathyrus japonicus (Leguminosae) in Lake Biwa, an ancient freshwater lake. AoB plants 2011. 
  5. Randall, R. 1977. The past and present status and distribution of Sea Pea, Lathyrus japonicus, Willd., in the British Isles. Watsonia 11, 247-251. 
  6. Kim, H. M., Han, S., Choi, K., Ku, J. J., Park, K. W., Cho, E. J., Lee, S. H. 2012. Aldose reductase inhibitory activity of the methanol extracts from Korean folk plants. Korean J. Agric. Sci. 39(2), 169-175.  https://doi.org/10.7744/cnujas.2012.39.2.169
  7. Lee, H. J., Kim, Y. A., Ahn, J. W., Na, H. J., Kim, H. M., Seo, Y. 2006. Screening of Korean marine plants for their inhibitory effect on histamine release from RPMC in vitro. Biotechnol. Bioprocess Eng. 11, 80-83.  https://doi.org/10.1007/BF02931873
  8. Lee, H. J., Kim, Y. A., Lee, J. I., Lee, B. J., Seo, Y. W. 2007. Screening of Korean marine plants extracts for inhibitory activity on protein tyrosine phosphatase 1B. J. Appl. Biol. Chem. 50(2), 74-77. 
  9. Yu, H. N., Cho, K. H., Sok, D. E., Jeong, T. S. 2003. Inhibitory Effects of Natural Plant Extracts on Lipoprotein-Associated Phospholipase $ A_2 $, $,  $, Platelet-Activating Factor Acetylhydrolase. Korean J. Pharmacogn. 34(1), 100-108. 
  10. Lee, I. S., Dat, N. T., Cai, X. F., Shen, G. H., Kim, Y. H. 2003. Inhibitory effects of natural products against NFAT (nuclear factor of activated T cells) transcription factor. Korean J. Pharmacogn. 34(2), 150-155.
  11. 11 Miao, L., Clair, D. K S. 2009. Regulation of superoxide dismutase genes: implications in disease. Free Radic. Biol. Med. 47(4), 344-356.  https://doi.org/10.1016/j.freeradbiomed.2009.05.018
  12. Valentao, P., Fernandes, E., Carvalho, F., Andrade, P. B., Seabra, R. M., de Lourdes Bastos, M. 2002. Antioxidant activity of Hypericum androsaemum infusion: scavenging activity against superoxide radical, hydroxyl radical and hypochlorous acid. Biol. Pharm. Bull. 25(10), 1320-1323.  https://doi.org/10.1248/bpb.25.1320
  13. Hamasaki, T., Kashiwagi, T., Imada, T., Nakamichi, N., Aramaki, S., Toh, K., Morisawa, S., Shimakoshi, H., Hisaeda, Y., Shirahata, S. 2008. Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles. Langmuir 24(14), 7354-7364.  https://doi.org/10.1021/la704046f
  14. Vrchovska, V., Sousa, C., Valentao, P., Ferreres, F., Pereira, J. A., Seabra, R. M., Andrade, P. B. 2006. Antioxidative properties of tronchuda cabbage (Brassica oleracea L. var. costata DC) external leaves against DPPH, superoxide radical, hydroxyl radical and hypochlorous acid. Food Chem. 98(3), 416-425.  https://doi.org/10.1016/j.foodchem.2005.06.019
  15. Na, E. J., Jang, H. H., Kim, G. R., Na, E. J., Jang, H. H., Kim, G. R. 2016. Review of recent studies and research analysis for anti-oxidant and anti-aging materials. Asian J. Beauty Cosmetol. 14(4), 481-491.  https://doi.org/10.20402/ajbc.2016.0107
  16. de Cassia da Silveira e Sa, R., Andrade, L. N., de Sousa, D. P. 2013. A review on anti-inflammatory activity of monoterpenes. Molecules 18(1), 1227-1254.  https://doi.org/10.3390/molecules18011227
  17. Park, C. M., Park, J. Y., Noh, K. H., Shin, J. H., Song, Y. S. 2011. Taraxacum officinale Weber extracts inhibit LPS-induced oxidative stress and nitric oxide production via the NF-κB modulation in RAW 264.7 cells, J. Ethnopharmacol. 133(2), 834-842.  https://doi.org/10.1016/j.jep.2010.11.015
  18. Mueller, M., Hobiger, S., Jungbauer, A. 2010. Anti-inflammatory activity of extracts from fruits, herbs and spices. Food Chem. 122(4), 987-996.  https://doi.org/10.1016/j.foodchem.2010.03.041
  19. Ahn, S., Singh, P., Jang, M., Kim, Y. J., Castro-Aceituno, V., Simu, S. Y., Kim, Y. J., Yang, D. C. 2018. Gold nanoflowers synthesized using Acanthopanacis cortex extract inhibit inflammatory mediators in LPS-induced RAW264. 7 macrophages via NF-κB and AP-1 pathways. Colloids Surf. B: Biointerfaces 162, 398-404.  https://doi.org/10.1016/j.colsurfb.2017.11.037
  20. EYIIS, E., PEKGOZ, A. K. 2021. Radical Scavenging Activity of Some Lathyrus Taxa Distributed in Burdur-Isparta Regio. Suleyman Demirel univ. fen bilim. enst. derg. 25(1), 121-126.  https://doi.org/10.19113/sdufenbed.692871
  21. Pastor-Cavada, E., Juan, R., Pastor J. E.,, Alaiz, M., Vioque, J. 2009. Antioxidant activity of seed polyphenols in fifteen wild Lathyrus species from South Spain. LWT-Food Sci. Technol. 42(3), 705-709.  https://doi.org/10.1016/j.lwt.2008.10.006
  22. Kim, J. Y., Lee, Y. J., Kim, W. S., Moon, S. K., Kim, Y. T. 2022. Antioxidant and Physiological Activities of Different Solvent Extracts of Cnidium japonicum. Korean J. Fish. Aquat. Sci. 55(3), 310-318. 
  23. Kim, S. S., Cha, H. C. 2017. Comparison of the total phenolic and flavonoid contents and antioxidant activities of four kinds of sand dune plants living in Taean, Korea. Korean J. Plant Res. 30(1), 8-16.  https://doi.org/10.7732/kjpr.2016.30.1.008
  24. Kim, D. G., Shin, J. H., Kang M. J. 2018. Antioxidant and anti-inflammatory activities of water extracts and ethanol extracts from Portulaca oleracea L. Korean J. Food Preserv. 25(1), 98-106.  https://doi.org/10.11002/kjfp.2018.25.1.98
  25. Yoon, M. H., Lim, C. H., Oh, J. H., Lee, J. C., Choi, Y. W. 1997. Screening of Inhibitors of platelet aggregation from edible plants. Korean J. Agric. Sci. 24(2), 267-274. 
  26. Choi, J. M., Choi, J. Y., Kim, H. M., Choi, K., Ku, J., Park, K. W., Lee, S., Cho, E. J. 2011. Antioxidative Activity and Protective Effect from Gastric Cancer of Korean Folk Plants. Cancer Prev. Res. 16(4), 387-394. 
  27. Lee, H., Kim, Y., Ahn, J., Lee, B., Moon, S. 2004. Screening of peroxynitrite and DPPH radical scavenging activities from salt marsh plants, Korean J. Biotechnol. Bioeng. 19(1), 57-61.  https://doi.org/10.4217/OPR.2004.26.1.059
  28. Lee, S. E., Sung, J. S., Jang, I. B., Kim, G. S., Ahn, T. J., Han, H. S., Kim, J. E., Kim, Y. O., Park, C. B., Cha, S. W. 2008. Investigation on antioxidant activity in plant resources. Korean J. Crop Sci. 16(5), 356-370. 
  29. Zhao, Y., Vanhoutte, P. M., Leung, S. W. 2015. Vascular nitric oxide: Beyond eNOS. J. Pharmacol. Sci. 129(2), 83-94.  https://doi.org/10.1016/j.jphs.2015.09.002
  30. Lee, H. J., Jeong, D. E., Gang, J. E., Sim, M. O., Seong, T. K., Woo, K. W., An, B., Jung, H. K., Cho, H. W. 2018. Quantitative Analysis of Chemical Composition and In Vitro Anti-oxidant and Anti-inflammatory Properties of Asparagus oligoclonos. Korean J. Pharmacogn. 49(2), 138-144. 
  31. Rastogi, R. P., Singh, S. P., Hader, D. P., Sinha, R. P. 2010. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2', 7'-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem. Biophys. Res. Commun. 397(3), 603-607.  https://doi.org/10.1016/j.bbrc.2010.06.006
  32. Lee, E. S., Ju, H. K., Moon, T. C., Lee, E., Jahng, Y., Lee, S. H., Son, J. K., Baek, S. H., Chang, H. W. 2004. Inhibition of nitric oxide and tumor necrosis factor-α (TNF-α) production by propenone compound through blockade of nuclear factor (NF)-κB activation in cultured murine macrophages. Biol. Pharm. Bull. 27(5), 617-620.  https://doi.org/10.1248/bpb.27.617
  33. Kiemer, A. K., Hartung, T., Huber, C., Vollmar, A. M. 2003. Phyllanthus amarus has anti-inflammatory potential by inhibition of iNOS, COX-2, and cytokines via the NF-κB pathway. J. Hepatol. 38(3), 289-297.  https://doi.org/10.1016/S0168-8278(02)00417-8
  34. Chu, H., Tang, Q., Huang, H., Hao, W., Wei, X. 2016. Grape-seed proanthocyanidins inhibit the lipopolysaccharide-induced inflammatory mediator expression in RAW264. 7 macrophages by suppressing MAPK and NF-κb signal pathways. Environ. Toxicol. Pharmacol. 41, 159-166.  https://doi.org/10.1016/j.etap.2015.11.018
  35. Zhu, J., Luo, C., Wang, P., He, Q., Zhou, J., Peng, H. 2013. Saikosaponin A mediates the inflammatory response by inhibiting the MAPK and NF-κB pathways in LPS-stimulated RAW 264.7 cells. Exp. Ther. Med., 5(5), 1345-1350.  https://doi.org/10.3892/etm.2013.988
  36. Yen, J. H., Yang, D. J., Chen, M. C., Hsieh, Y. F., Sun, Y. S., Tsay, G. J. 2010. Glycine tomentella Hayata inhibits IL-1β and IL-6 production, inhibits MMP-9 activity, and enhances RAW264. 7 macrophage clearance of apoptotic cells. J. Biomed. Sci. 17(1), 1-9.  https://doi.org/10.1186/1423-0127-17-1
  37. Chen, G., Li, K. K., Fung, C. H., Liu, C. L., Wong, H. L., Leung, P. C., Ko, C. H. 2014. Er-Miao-San, a traditional herbal formula containing Rhizoma Atractylodis and Cortex Phellodendri inhibits inflammatory mediators in LPS-stimulated RAW264. 7 macrophages through inhibition of NF-κB pathway and MAPKs activation. J. Ethnopharmacol. 154(3), 711-718. https://doi.org/10.1016/j.jep.2014.04.042
  38. 38 Sierra, A., Navascues, J., Cuadros, M. A., Calvente, R., Martin-Oliva, D., Ferrer-Martin, R. M., Martin-Estebane, M., Carrasco, M. C., Marin-Teva, J, L. 2014. Expression of inducible nitric oxide synthase (iNOS) in microgliaof the developing quail retina. PLoS One 9(8), e106048. 
  39. Eibl, G., Bruemmer, D., Okada, Y., Duffy, J. P., Law, R. E., Reber, H. A., Hines, O. J. 2003. PGE2 is generated by specific COX-2 activity and increases VEGF production in COX-2-expressing human pancreatic cancer cells. Biochem. Biophys. Res. Commun. 306(4), 887-897. https://doi.org/10.1016/S0006-291X(03)01079-9