DOI QR코드

DOI QR Code

Numerical study on conjugate heat transfer in a liquid-metal-cooled pipe based on a four-equation turbulent heat transfer model

  • Xian-Wen Li (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • Xing-Kang Su (School of Nuclear Science and Technology, Lanzhou University) ;
  • Long Gu (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • Xiang-Yang Wang (School of Nuclear Science and Technology, Lanzhou University) ;
  • Da-Jun Fan (Institute of Modern Physics, Chinese Academy of Sciences)
  • Received : 2022.12.20
  • Accepted : 2023.02.04
  • Published : 2023.05.25

Abstract

Conjugate heat transfer between liquid metal and solid is a common phenomenon in a liquid-metal-cooled fast reactor's fuel assembly and heat exchanger, dramatically affecting the reactor's safety and economy. Therefore, comprehensively studying the sophisticated conjugate heat transfer in a liquid-metal-cooled fast reactor is profound. However, it has been evidenced that the traditional Simple Gradient Diffusion Hypothesis (SGDH), assuming a constant turbulent Prandtl number (Prt,, usually 0.85 - 1.0), is inappropriate in the Computational Fluid Dynamics (CFD) simulations of liquid metal. In recent decades, numerous studies have been performed on the four-equation model, which is expected to improve the precision of liquid metal's CFD simulations but has not been introduced into the conjugate heat transfer calculation between liquid metal and solid. Consequently, a four-equation model, consisting of the Abe k - ε turbulence model and the Manservisi k𝜃 - ε𝜃 heat transfer model, is applied to study the conjugate heat transfer concerning liquid metal in the present work. To verify the numerical validity of the four-equation model used in the conjugate heat transfer simulations, we reproduce Johnson's experiments of the liquid lead-bismuth-cooled turbulent pipe flow using the four-equation model and the traditional SGDH model. The simulation results obtained with different models are compared with the available experimental data, revealing that the relative errors of the local Nusselt number and mean heat transfer coefficient obtained with the four-equation model are considerably reduced compared with the SGDH model. Then, the thermal-hydraulic characteristics of liquid metal turbulent pipe flow obtained with the four-equation model are analyzed. Moreover, the impact of the turbulence model used in the four-equation model on overall simulation performance is investigated. At last, the effectiveness of the four-equation model in the CFD simulations of liquid sodium conjugate heat transfer is assessed. This paper mainly proves that it is feasible to use the four-equation model in the study of liquid metal conjugate heat transfer and provides a reference for the research of conjugate heat transfer in a liquid-metal-cooled fast reactor.

Keywords

Acknowledgement

This work was supported by the Research on key technology and safety verification of primary circuit, Grant No. 2020YFB1902104, the Experimental study on thermal hydraulics of fuel rod bundle, Grant No. Y828020XZ0 and the National Natural Science Foundation-Outstanding Youth Foundation, Grant No.12122512.

References

  1. T. Abram, S. Ion, Generation-IV nuclear power: a review of the state of the science, Energy Pol. 36 (2008) 4323-4330. https://doi.org/10.1016/j.enpol.2008.09.059
  2. X.-K. Su, X.-W. Li, L. Zhang, L. Gu, D.-J. Fan, Thermal-hydraulic study in a wire-wrapped 19-rod bundle based on an isotropic four-equation model, Ann. Nucl. Energy 178 (2022), 109343.
  3. X.J. Liu, D.M. Yang, Y. Yang, X. Chai, J.B. Xiong, T.F. Zhang, X. Cheng, Computational fluid dynamics and subchannel analysis of leadebismuth eutecticcooled fuel assembly under various blockage conditions, Appl. Therm. Eng. 164 (2020), 114419.
  4. S. He, M. Wang, J. Zhang, W. Tian, S. Qiu, G.H. Su, Numerical simulation of three-dimensional flow and heat transfer characteristics of liquid leadebismuth, Nucl. Eng. Technol. 53 (2021) 1834-1845. https://doi.org/10.1016/j.net.2020.12.025
  5. X. Cheng, N. Tak, Investigation on turbulent heat transfer to lead-bismuth eutectic flows in circular tubes for nuclear applications, Nucl. Eng. Des. 236 (2006) 385-393. https://doi.org/10.1016/j.nucengdes.2005.09.006
  6. R. da Via, S. Manservisi, F. Menghini, A k-Ω-kθ-Ωθ four parameter logarithmic turbulence model for liquid metals, Int. J. Heat Mass Tran. 101 (2016) 1030-1041. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.084
  7. X. Su, X. Li, X. Wang, Y. Liu, Q. Chen, Q. Shi, X. Sheng, L. Gu, Development and assessment of an isotropic four-equation model for heat transfer of low Prandtl number fluids, Front, Application of Plant Secondary Metabolites to Pain Neuromodulation, Volume II 10 (2022), 890795034.
  8. S. Manservisi, F. Menghini, A CFD four parameter heat transfer turbulence model for engineering applications in heavy liquid metals, Int. J. Heat Mass Tran. 69 (2014) 312-326. https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.017
  9. K. Abe, T. Kondoh, Y. Nagano, A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows-II. Thermal field calculations, Int. J. Heat Mass Tran. 38 (1995) 1467-1481. https://doi.org/10.1016/0017-9310(94)00252-Q
  10. D. Cerroni, R. da Via, S. Manservisi, F. Menghini, G. Pozzetti, R. Scardovelli, Numerical validation of a k-ω-kθ-ωθ heat transfer turbulence model for heavy liquid metals, in: J Phys Conf Ser, IOP Publishing, 2015, 012046.
  11. B. Deng, W. Wu, S. Xi, A near-wall two-equation heat transfer model for wall turbulent flows, Int. J. Heat Mass Tran. 44 (2001) 691-698. https://doi.org/10.1016/S0017-9310(00)00131-9
  12. Y. Nagano, M. Shimada, Development of a two-equation heat transfer model based on direct simulations of turbulent flows with different Prandtl numbers, Phys. Fluids 8 (1996) 3379-3402. https://doi.org/10.1063/1.869124
  13. S. Manservisi, F. Menghini, Triangular rod bundle simulations of a CFD k-ε-kθ-εθ heat transfer turbulence model for heavy liquid metals, Nucl. Eng. Des. 273 (2014) 251-270. https://doi.org/10.1016/j.nucengdes.2014.03.022
  14. S. Manservisi, F. Menghini, CFD simulations in heavy liquid metal flows for square lattice bare rod bundle geometries with a four parameter heat transfer turbulence model, Nucl. Eng. Des. 295 (2015) 251-260. https://doi.org/10.1016/j.nucengdes.2015.10.006
  15. J. Khalesi, N. Sarunac, Numerical analysis of flow and conjugate heat transfer for supercritical CO2 and liquid sodium in square microchannels, Int. J. Heat Mass Tran. 132 (2019) 1187-1199. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.071
  16. H.A. Johnson, J.P. Hartnett, W. Clabaugh, Heat transfer to molten lead-bismuth eutectic in turbulent pipe flow, Trans. Am. Soc. Mech. Eng. 75 (1953) 1191-1198. https://doi.org/10.1115/1.4015579
  17. M. Darwish, F. Moukalled, The Finite Volume Method in Computational Fluid Dynamics: an Advanced Introduction with OpenFOAM® and Matlab®, Springer, 2021.
  18. X. Li, X. Su, L. Gu, L. Zhang, X. Sheng, Numerical study of low Pr flow in a bare 19-rod bundle based on an advanced turbulent heat transfer model, Front. Energy Res. (2022) 743.
  19. M. Duponcheel, L. Bricteux, M. Manconi, G. Winckelmans, Y. Bartosiewicz, Assessment of RANS and improved near-wall modeling for forced convection at low Prandtl numbers based on LES up to Reτ= 2000, Int. J. Heat Mass Tran. 75 (2014) 470-482. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.080
  20. L.-B. Handbook, Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-Hydraulics and Technology, Nuclear Energy Agency, NEA, 2007.
  21. B.E. Launder, D.B. Spalding, Lectures in Mathematical Models of Turbulence, 1972.
  22. B.E. Launder, D.B. Spalding, The numerical computation of turbulent flows, in: Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion, Elsevier, 1983, pp. 96-116.
  23. A. Hellsten, Some improvements in Menter's k-omega SST turbulence model, in: 29th Aiaa, Fluid Dynamics Conference, 1998, p. 2554.
  24. F. Menter, T. Esch, Elements of industrial heat transfer predictions, in: 16th Brazilian Congress of Mechanical Engineering, COBEM), 2001, p. 650.
  25. F.R. Menter, M. Kuntz, R. Langtry, Ten years of industrial experience with the SST turbulence model, Turbulence, Heat and Mass Transfer 4 (2003) 625-632.
  26. B.E. Launder, B.I. Sharma, Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc, Lett. Heat Mass Tran. 1 (1974) 131-137. https://doi.org/10.1016/0094-4548(74)90150-7
  27. D.C. Wilcox, Turbulence Modeling for CFD, DCW industries La Canada, CA, 1998.
  28. V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski, C. Speziale, Development of turbulence models for shear flows by a double expansion technique, Phys. Fluid. Fluid Dynam. 4 (1992) 1510-1520. https://doi.org/10.1063/1.858424
  29. J.K. Fink, L. Leibowitz, Thermodynamic and Transport Properties of Sodium Liquid and Vapor, Argonne National Lab., 1995.
  30. J. Pacio, L. Marocco, T. Wetzel, Review of data and correlations for turbulent forced convective heat transfer of liquid metals in pipes, Heat Mass Tran. 51 (2015) 153-164. https://doi.org/10.1007/s00231-014-1392-3
  31. S.S. Kutateladze, V.M. Borishanskii, I.I. Novikov, Heat transfer in liquid metals, Soviet J. Atom. Energy 4 (1958) 555-571. https://doi.org/10.1007/BF01497931
  32. V.I. Subbotin, A.K. Papovyants, Pl. Kirillov, N.N. Ivanovskii, A study of heat transfer to molten sodium in tubes, Sov. Atom. Energy 13 (1963) 991-994. https://doi.org/10.1007/BF01480861
  33. C. Ching-Jen, J.S. Chiou, Laminar and turbulent heat transfer in the pipe entrance region for liquid metals, Int. J. Heat Mass Tran. 24 (1981) 1179-1189. https://doi.org/10.1016/0017-9310(81)90167-8
  34. E. Skupinski, J. Tortel, L. Vautrey, Determination des coefficients de convection d'un alliage sodium-potassium dans un tube circulaire, Int. J. Heat Mass Tran. 8 (1965) 937-951. https://doi.org/10.1016/0017-9310(65)90077-3
  35. R.H. Notter, C.A. Sleicher, A solution to the turbulent Graetz problem-III Fully developed and entry region heat transfer rates, Chem. Eng. Sci. 27 (1972) 2073-2093. https://doi.org/10.1016/0009-2509(72)87065-9