Acknowledgement
This work was supported by the NSAF (Grant No. U1930125), the National Natural Science Foundation of China (11975121 and 41904160).
References
- H.Y. Chen, A.J. Li, D.E. Finlow, The lead and lead-acid battery industries during 2002 and 2007 in China, J. Power Sources 191 (2009) 22-27, https://doi.org/10.1016/j.jpowsour.2008.12.140.
- Z. Guo, Y. Ma, X. Dong, J. Huang, Y. Wang, Y. Xia, Environmentally friendly and flexible aqueous zinc battery using an organic cathode, Angew Chem. Int. Ed. Engl. 57 (2018) 11737-11741, https://doi.org/10.1002/anie.201807121.
- A. Verbic, M. Gorjanc, B. Simoncic, Zinc oxide for functional textile coatings: recent advances, Coatings 9 (2019), https://doi.org/10.3390/coatings9090550.
- K.S. Nair, M. Mittal, K. Lal, R. Mahanti, C. Sivaramakrishnan, Development of rapidly solidified (RS) magnesium-aluminium-zinc alloy, Mater. Sci. Eng., A 304 (2001) 520-523.
- J.P. McCaffrey, H. Shen, B. Downton, E. Mainegra-Hing, Radiation attenuation by lead and nonlead materials used in radiation shielding garments, Med. Phys. 34 (2007) 530-537, https://doi.org/10.1118/1.2426404.
- G.M. Mudd, S.M. Jowitt, T.T. Werner, The world's lead-zinc mineral resources: scarcity, data, issues and opportunities, Ore Geol. Rev. 80 (2017) 1160-1190, https://doi.org/10.1016/j.oregeorev.2016.08.010.
- J. Charbucinski, J. Malos, A. Rojc, C. Smith, Prompt gamma neutron activation analysis method and instrumentation for copper grade estimation in large diameter blast holes, Appl. Radiat. Isot. 59 (2003) 197-203, https://doi.org/10.1016/s0969-8043(03)00163-5.
- J. Charbucinski, O. Duran, R. Freraut, N. Heresi, I. Pineyro, The application of PGNAA borehole logging for copper grade estimation at Chuquicamata mine, Appl. Radiat. Isot. 60 (2004) 771-777, https://doi.org/10.1016/j.apradiso.2003.12.007.
- M. Borsaru Z.J, Application of PGNAA for bulk coal samples in a 4p geometry, Appl. Radiat. Isot. 54 (3) (2001) 519-526, https://doi.org/10.1016/S0969-8043(99)00276-6.
- A.A. Naqvi, M.M. Nagadi, S. Kidwai, R. Khateeb ur, M. Maslehuddin, Search of a prompt gamma ray for chlorine analysis in a Portland cement sample, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 533 (2004) 591-597, https://doi.org/10.1016/j.nima.2004.06.132.
- K. Hossny, S. Magdi, A.Y. Soliman, A.H. Hossny, Detecting explosives by PGNAA using KNN Regressors and decision tree classifier: a proof of concept, Prog. Nucl. Energy 124 (2020), https://doi.org/10.1016/j.pnucene.2020.103332.
- K. Oh, Neutronic design of pulsed neutron facility (PNF) for PGNAA studies of biological samples, Nucl. Eng. Technol. (2022), https://doi.org/10.1016/j.net.2021.07.024.
- K. Trofimczyk, S. Saraswatibhatla, C. Smith, Spectrometric nuclear logging as a tool for real-time, downhole assay - case studies using SIROLOG PGNAA, in: 11th SAGA Biennial Technical Meeting and Exhibition, 2009, https://doi.org/10.3997/2214-4609-pdb.241.trofimczyk_paper2ples.
- L. Tian, F. Zhang, J. Liu, X. Wang, Y. Ti, Monte Carlo simulation of Cu, Ni and Fe grade determination in borehole by PGNAA technique, J. Radioanal. Nucl. Chem. 315 (2018) 51-56, https://doi.org/10.1007/s10967-017-5636-9.
- W. Nunes, A. Da Silva, V. Crispim, R. Schirru, Explosives detection using prompt-gamma neutron activation and neural networks, Appl. Radiat. Isot. 56 (2002) 937-943. https://doi.org/10.1016/S0969-8043(02)00059-3
- S.M. Galib, P.K. Bhowmik, A.V. Avachat, H.K. Lee, A comparative study of machine learning methods for automated identification of radioisotopes using NaI gamma-ray spectra, Nucl. Eng. Technol. 53 (2021) 4072-4079, https://doi.org/10.1016/j.net.2021.06.020.
- K. Mark, C.J. Sullivan, An automated isotope identification and quantification algorithm for isotope mixtures in low-resolution gamma-ray spectra, Radiat. Phys. Chem. 155 (2019) 281-286. https://doi.org/10.1016/j.radphyschem.2018.06.017
- F. Zhang, L. Tian, J. Liu, et al., Numerical simulation on scintillator detector response for determining element content in PGNAA system, J. Radioanal. Nucl. Chem. 311 (2017) 1309-1314, https://doi.org/10.1007/s10967-016-5034-8.
- W. Metwally, R. Gardner, A. Sood, Gaussian broadening of MCNP pulse height spectra, Trans. Am. Nucl. Soc. 91 (2004) 789-790.
- T. Ding, T. Tan, J. Wang, D. Ma, J. Lu, R. Zhang, B. Wu, Ore genesis of the Huangshaping skarn W-Mo-Pb-Zn deposit, southern Hunan Province, China: insights from in situ LA-MC-ICP-MS sulphur isotopic compositions, Geol. Mag. 159 (2022) 981-995, https://doi.org/10.1017/s0016756822000188.
- T. Ding, D. Ma, J. Lu, R. Zhang, S.S. Zhang, Pb, and Sr isotope geochemistry and genesis of Pb-Zn mineralization in the Huangshaping polymetallic ore deposit of southern Hunan Province, China, Ore Geol. Rev. 77 (2016) 117-132, https://doi.org/10.1016/j.oregeorev.2016.02.010.
- D. Ramyachitra, P. Manikandan, Imbalanced dataset classification and solutions: a review, Int. J. Comput. Bus. Res. (IJCBR) 5 (2014) 1-29.
- S. Qi, W. Zhao, Y. Chen, et al., Comparison of machine learning approaches for radioisotope identification using NaI (TI) gamma-ray spectrum, Appl. Radiat. Isot. 186 (2022), 110212, https://doi.org/10.1016/j.apradiso.2022.110212.
- C.W. Hsu, C.C. Chang, C.J. Lin, A Practical Guide to Support Vector Classification, 2003, pp. 1396-1440.
- N.S. Altman, An introduction to kernel and nearest-neighbor nonparametric regression, Am. Statistician 46 (1992) 175-185, https://doi.org/10.1080/00031305.1992.10475879.
- M. Scutari, Naive bayes classifiers, in: ICC 2022 - IEEE International Conference on Communications, 2022.
- L. Ali, S.U. Khan, N.A. Golilarz, et al., A feature-driven decision support system for heart failure prediction based on statistical model and Gaussian naive bayes, Comput. Math. Methods Med. (2019), https://doi.org/10.1155/2019/6314328.
- L. Breiman, Random forests, Mach. Learn. 45 (2001) 5-32. https://doi.org/10.1023/A:1010933404324
- A. Tharwat, Classification assessment methods, Appl. Comput. Info. 17 (2021) 168-192, https://doi.org/10.1016/j.aci.2018.08.003.
- D. Chicco, G. Jurman, The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation, BMC Genom. 21 (2020) 6, https://doi.org/10.1186/s12864-019-6413-7.
- P. Refaeilzadeh, L. Tang, H. Liu, Cross-Validation, Encyclopedia of Database Systems, 2016, pp. 1-7.