DOI QR코드

DOI QR Code

Dissolution of synthetic U-DBP and corrosion of stainless steel by dissolution schemes

  • Guanghui Wang (College of Nuclear Science and Technology, Harbin Engineering University) ;
  • Yaorui Li (College of Nuclear Science and Technology, Harbin Engineering University) ;
  • Mingjian He (College of Nuclear Science and Technology, Harbin Engineering University) ;
  • Meng Zhang (College of Nuclear Science and Technology, Harbin Engineering University) ;
  • Yang Gao (College of Nuclear Science and Technology, Harbin Engineering University) ;
  • Hui He (College of Nuclear Science and Technology, Harbin Engineering University) ;
  • Caishan Jiao (College of Nuclear Science and Technology, Harbin Engineering University)
  • Received : 2022.10.25
  • Accepted : 2023.01.30
  • Published : 2023.05.25

Abstract

In spent fuel reprocessing, UO2(DBP)2 (U-DBP) can be deposited in stainless steel equipment. U-DBP must be removed by dissolution and the process must not cause corrosion to stainless steel. This study was conducted to find the best scheme for dissolution. U-DBP was manufactured by the titrimetric sedimentation method. The effects of different factors on the dissolution of U-DBP were investigated. For example, solid-liquid ratio, hydrazine carbonate solutions with different mass components, mixed solutions containing different concentrations of H2O2, and different carbonates. The results indicated that U-DBP does not have a regular crystal morphology. With the increase of the solid-liquid ratio and the mass fraction of hydrazine carbonate, the concentration of U(VI) at the dissolution equilibrium increases gradually. The addition of H2O2 has a great promotion effect on the dissolution. However, when the concentration of H2O2 is greater than 0.5 M, the dissolution solution may have an erosive effect on the stainless steel. (NH4)2CO3 can increase the dissolution capacity of dissolved U-DBP, but it may also accelerate the corrosion of stainless steel.

Keywords

Acknowledgement

We acknowledge financial support from the National Natural Science Foundation of China (U1967219).

References

  1. Dugeshwar Karley, Sudhir Kumar Shukla, Toleti Subba Rao, Microbiological assessment of spent nuclear fuel pools: an in-perspective review, Journal of Environmental Chemical Engineering 10 (4) (2022) 108050, https://doi.org/10.1016/j.jece.2022.108050. 
  2. Arunasis Bhattacharyya, et al., Aqueous soluble 'N0 donor heterocyclic ligands for the mutual separation of Am3+ and Eu3+: solvent extraction, flat sheet supported liquid membrane and hollow fiber microextraction studies, Journal of Environmental Chemical Engineering 9 (5) (2021), 106041, https://doi.org/10.1016/j.jece.2021.106041. 
  3. George Kathryn, et al., A review of technetium and zirconium extraction into tributyl phosphate in the PUREX process, Hydrometallurgy 211 (2022) 105892, https://doi.org/10.1016/j.hydromet.2022.105892. 
  4. Yu V. Serenko, et al., The effect of radiolysis and thermally stimulated acid hydrolysis on tributyl phosphate and its solutions in ISOPAR-M, Radiation Physics and Chemistry 195 (2022), 110080, https://doi.org/10.1016/0378-3812(85)85012-3. 
  5. James C. Mailen, Secondary Purex solvent cleanup: laboratory development, Nuclear technology 83 (2) (1988) 182-189, https://doi.org/10.13182/NT88-A34159. 
  6. Smitha Manohar, et al., Management of spent solvents by alkaline hydrolysis process, Waste Management 19 (7-8) (1999) 509-517, https://doi.org/10.1016/S0956-053X(99)00199-3. 
  7. Gupta, Nishesh Kumar, et al., Biosorption-an alternative method for nuclear waste management: a critical review, Journal of Environmental Chemical Engineering 6 (2) (2018) 2159-2175, https://doi.org/10.1016/j.jece.2018.03.021. 
  8. B.-G. Brodda, D. Heinen, Solvent performance in THTR nuclear fuel reprocessing. Part II: on the formation of dibutyl phosphoric acid by radiolytic and hydrolytic degradation of the TBP-n-paraffin extractant, Nuclear Technology 34 (3) (1977) 428-437, https://doi.org/10.13182/NT77-A31808. 
  9. O.K. Tallent, J.C. Mailen, K.E. Dodson, Purex diluent chemical degradation, Nuclear technology 71 (2) (1985) 417-425, https://doi.org/10.13182/NT85-A33694. 
  10. O.K. Tallent, James C. Mailen, An alternative solvent cleanup method using a hydrazine oxalate wash reagent, Nuclear Technology 59 (1) (1982) 51-62, https://doi.org/10.13182/NT82-A33051. 
  11. Gunzo Uchiyama, Sachio Fujine, Mitsuru Maeda, Solvent-washing process using butylamine in fuel reprocessing, Nuclear technology 120 (1) (1997) 41-47, https://doi.org/10.13182/NT97-A35429. 
  12. M. Watanabe, et al., Back-extraction of uranium (VI) from organophosphoric acid with hydrazine carbonate, Journal of Radioanalytical and Nuclear Chemistry 250 (2) (2001) 377-379, https://doi.org/10.1023/a:1017980520304. 
  13. H. Goldacker, et al., A newly developed solvent wash process in nuclear fuel reprocessing decreasing the waste volume, Kerntechnik 18 (10) (1976) 426-430. 
  14. H.T. Hahn, E.M. Vander Wall, TBP decomposition product behavior in post-extractive operations, Nuclear Science and Engineering 17 (4) (1963) 613-619, https://doi.org/10.13182/NSE63-A18453. 
  15. Brian A. Powell, James D. Navratil, Major C. Thompson, Compounds of hexavalent uranium and dibutylphosphate in nitric acid systems, Solvent extraction and ion exchange 21 (3) (2003) 347-368, https://doi.org/10.1081/SEI-120020215. 
  16. A.L. Rufus, et al., Dissolution of synthetic uranium dibutyl phosphate deposits in oxidizing and reducing chemical formulations, Journal of hazardous materials 254 (2013) 263-269, https://doi.org/10.1016/j.jhazmat.2013.03.050. 
  17. A.L. Rufus, M.K. Dhanesh, S. Velmurugan, Dissolution of synthetic uranium dibutyl phosphate (U-DBP) in sodium EDTA and sodium carbonate based formulations, Progress in Nuclear Energy 100 (2017) 373-379, https://doi.org/10.1016/j.pnucene.2017.07.014. 
  18. Sergei I. Stepanov, Alexander V. Boyarintsev, Reprocessing of spent nuclear fuel in carbonate media: problems, achievements, and prospects, Nuclear Engineering and Technology 54 (7) (2022)2339-2358 , doi:10.1016/j.net.2022.01.009. 
  19. Steven Smith, et al., Dissolution of uranium oxides under alkaline oxidizing conditions, Journal of radioanalytical and nuclear chemistry 282 (2) (2009) 617-621, https://doi.org/10.1007/s10967-009-0182-8. 
  20. John McGrady, et al., The kinetics and mechanism of H 2 O 2 decomposition at the U3O8 surface in bicarbonate solution, RSC advances 11 (46) (2021) 28940-28948, https://doi.org/10.1039/D1RA05580A. 
  21. Chenxi Hou, et al., Ultrasonic-assisted dissolution of U3O8 in carbonate medium, Nuclear Engineering and Technology 55 (1) (2022) 63-70, https://doi.org/10.1016/j.net.2022.09.025. 
  22. Chenxi Hou, et al., Dissolution of uranium dioxide powder in carbonate-peroxide solution, Journal of Radioanalytical and Nuclear Chemistry 331 (5) (2022) 2245-2252, https://doi.org/10.1007/s10967-022-08263-8. 
  23. D.W. Tedder, E.P. Horwitz, Efficient strategies for partitioning actinides from alkaline wastes, Industrial & engineering chemistry research 44 (3) (2005) 606-613, https://doi.org/10.1021/ie0499207. 
  24. A.S. Pente, et al., Study of different approaches for management of contaminated emulsified aqueous secondary waste, Desalination 232 (1-3) (2008) 206-215, https://doi.org/10.1016/j.desal.2008.01.010. 
  25. M. Watanabe, et al., Back-extraction of tri-and tetravalent actinides from diisodecylphosphoric acid (DIDPA) with hydrazine carbonate, Journal of radioanalytical and nuclear chemistry 252 (1) (2002) 53-57, https://doi.org/10.1023/a:1015279519321. 
  26. S.A.M. Refaey, F. Taha, A.M. Abd El-Malak, Corrosion and inhibition of stainless steel pitting corrosion in alkaline medium and the effect of Cl- and Br- anions, Applied Surface Science 242 (1-2) (2005) 114-120, https://doi.org/10.1016/j.apsusc.2004.08.003. 
  27. Alec Groysman, Physicochemical Basics of Corrosion at Refineries' Units. Corrosion Problems and Solutions in Oil Refining and Petrochemical Industry, 32, 2017, pp. 17-36, https://doi.org/10.1007/978-3-319-45256-2_3. 
  28. Huiyun Tian, et al., Effect of NH4+ on the pitting corrosion behavior of 316 stainless steel in the chloride environment, Journal of Electroanalytical Chemistry 894 (2021), 115368, https://doi.org/10.1016/j.jelechem.2021.115368. 
  29. Tina M. Hayward, Igor M. Svishchev, Ramesh C. Makhija, Stainless steel flow reactor for supercritical water oxidation: corrosion tests, The Journal of supercritical fluids 27 (3) (2003) 275-281, https://doi.org/10.1016/S0896-8446(02)00264-4. 
  30. N.J. Laycock, R.C. Newman, J. Stewart, The transpassive corrosion of stainless steel in stabilized alkaline peroxide solution, Corrosion science 37 (10) (1995) 1637-1642, https://doi.org/10.1016/0010-938X(95)00113-X. 
  31. Chunhui Li, et al., An experimental study on the extraction mechanisms of Ce (IV) from HNO3 solutions using C4mimNTf2 as extractant, Journal of Radio-analytical and Nuclear Chemistry 331 (1) (2022) 365-373, https://doi.org/10.1007/s10967-021-08119-7. 
  32. Erwann Legrand, et al., Effect of sea lice chemotherapeutant hydrogen peroxide on the photosynthetic characteristics and bleaching of the coralline alga Lithothamnion soriferum, Aquatic Toxicology 247 (2022), 106173, https://doi.org/10.1016/j.aquatox.2022.106173. 
  33. Koji Oshita, et al., Synthesis of chitosan resin possessing a phenylarsonic acid moiety for collection/concentration of uranium and its determination by ICP-AES, Analytical and bioanalytical chemistry 390 (7) (2008) 1927-1932, https://doi.org/10.1007/s00216-008-1931-1. 
  34. S. Maleki Dizaj, et al., Nanosizing of drugs: effect on dissolution rate, Research in pharmaceutical sciences 10 (2) (2015) 95. 
  35. R.T. Loto, C.A. Loto, Effect of P-phenylediamine on the corrosion of austenitic stainless steel type 304 in hydrochloric acid, International Journal of Electrochemical Science 7 (10) (2012) 9423-9440, https://doi.org/10.1016/j.jpowsour.2012.06.040. 
  36. Ray L. Frost, et al., A Raman spectroscopic study of the uranyl phosphate mineral parsonsite, Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering 37 (9) (2006) 879-891, https://doi.org/10.1002/jrs.1517. 
  37. Ray L. Frost, et al., A Raman spectroscopic study of the uranyl phosphate mineral bergenite, Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy 66 (4-5) (2007) 979-984, doi:10.1016/j.saa.2006.04.036. 
  38. C.S. Venkateswaran, The Raman spectra of ortho-phosphoric acid and some phosphates, Proceedings of the Indian Academy of Sciences-Section A 3 (1) (1936) 25-30, https://doi.org/10.1007/BF03046232. 
  39. Wolfram W. Rudolph, Raman-and infrared-spectroscopic investigations of dilute aqueous phosphoric acid solutions, Dalton Transactions 39 (40) (2010) 9642-9653, https://doi.org/10.1039/C0DT00417K. 
  40. Harumi Sato, et al., Infrared and Raman spectroscopy and quantum chemistry calculation studies of C-H/... O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoate, Journal of molecular structure 744 (2005) 35-46, https://doi.org/10.1016/j.molstruc.2004.10.069. 
  41. Yoshinobu Abe, et al., Dissolution rates of alkaline rocks by carbonic acid: influence of solid/liquid ratio, temperature, and CO2 pressure, Chemical Engineering Research and Design 91 (5) (2013) 933-941, https://doi.org/10.1016/j.cherd.2012.09.001. 
  42. Dong-Yong Chung, et al., Oxidative leaching of uranium from SIMFUEL using Na 2 CO 3-H 2 O 2 solution, Journal of radioanalytical and nuclear chemistry 284 (1) (2010) 123-129, https://doi.org/10.1007/s10967-009-0443-6. 
  43. Elizangela A. Santos, Ana CQ. Ladeira, Recovery of uranium from mine waste by leaching with carbonate-based reagents, Environmental science & technology 45 (8) (2011) 3591-3597, https://doi.org/10.1021/es2002056. 
  44. Shane M. Peper, et al., Kinetic study of the oxidative dissolution of UO2 in aqueous carbonate media, Industrial & engineering chemistry research 43 (26) (2004) 8188-8193, https://doi.org/10.1021/ie049457y. 
  45. Kwang-Wook Kim, et al., Evaluation of the behavior of uranium peroxocarbonate complexes in Na-U (VI)-CO3-OH-H2O2 solutions by Raman spectroscopy, The Journal of Physical Chemistry A 116 (49) (2012) 12024-12031, https://doi.org/10.1021/jp307062u. 
  46. Joan De Pablo, et al., The oxidative dissolution mechanism of uranium dioxide. I. The effect of temperature in hydrogen carbonate medium, Geochimica et Cosmochimica Acta 63 (1999) 3097-3103, https://doi.org/10.1016/S0016-7037(99)00237-9, 19-20. 
  47. Kwang-Wook Kim, et al., Recovery of uranium from (U, Gd) O2 nuclear fuel scrap using dissolution and precipitation in carbonate media, Journal of nuclear materials 418 (1-3) (2011) 93-97, https://doi.org/10.1016/j.jnucmat.2011.06.019. 
  48. Kwang-Wook Kim, et al., A conceptual process study for recovery of uranium alone from spent nuclear fuel by using high-alkaline carbonate media, Nuclear technology 166 (2) (2009) 170-179, https://doi.org/10.13182/NT09-A7403. 
  49. Zanonato, Pier Luigi, et al., Chemical equilibria in the uranyl (vi)-peroxide-carbonate system; identification of precursors for the formation of poly-peroxometallates, Dalton Transactions 41 (38) (2012) 11635-11641, https://doi.org/10.1039/C2DT31282D.