Acknowledgement
We acknowledge financial support from the National Natural Science Foundation of China (U1967219).
References
- Dugeshwar Karley, Sudhir Kumar Shukla, Toleti Subba Rao, Microbiological assessment of spent nuclear fuel pools: an in-perspective review, Journal of Environmental Chemical Engineering 10 (4) (2022) 108050, https://doi.org/10.1016/j.jece.2022.108050.
- Arunasis Bhattacharyya, et al., Aqueous soluble 'N0 donor heterocyclic ligands for the mutual separation of Am3+ and Eu3+: solvent extraction, flat sheet supported liquid membrane and hollow fiber microextraction studies, Journal of Environmental Chemical Engineering 9 (5) (2021), 106041, https://doi.org/10.1016/j.jece.2021.106041.
- George Kathryn, et al., A review of technetium and zirconium extraction into tributyl phosphate in the PUREX process, Hydrometallurgy 211 (2022) 105892, https://doi.org/10.1016/j.hydromet.2022.105892.
- Yu V. Serenko, et al., The effect of radiolysis and thermally stimulated acid hydrolysis on tributyl phosphate and its solutions in ISOPAR-M, Radiation Physics and Chemistry 195 (2022), 110080, https://doi.org/10.1016/0378-3812(85)85012-3.
- James C. Mailen, Secondary Purex solvent cleanup: laboratory development, Nuclear technology 83 (2) (1988) 182-189, https://doi.org/10.13182/NT88-A34159.
- Smitha Manohar, et al., Management of spent solvents by alkaline hydrolysis process, Waste Management 19 (7-8) (1999) 509-517, https://doi.org/10.1016/S0956-053X(99)00199-3.
- Gupta, Nishesh Kumar, et al., Biosorption-an alternative method for nuclear waste management: a critical review, Journal of Environmental Chemical Engineering 6 (2) (2018) 2159-2175, https://doi.org/10.1016/j.jece.2018.03.021.
- B.-G. Brodda, D. Heinen, Solvent performance in THTR nuclear fuel reprocessing. Part II: on the formation of dibutyl phosphoric acid by radiolytic and hydrolytic degradation of the TBP-n-paraffin extractant, Nuclear Technology 34 (3) (1977) 428-437, https://doi.org/10.13182/NT77-A31808.
- O.K. Tallent, J.C. Mailen, K.E. Dodson, Purex diluent chemical degradation, Nuclear technology 71 (2) (1985) 417-425, https://doi.org/10.13182/NT85-A33694.
- O.K. Tallent, James C. Mailen, An alternative solvent cleanup method using a hydrazine oxalate wash reagent, Nuclear Technology 59 (1) (1982) 51-62, https://doi.org/10.13182/NT82-A33051.
- Gunzo Uchiyama, Sachio Fujine, Mitsuru Maeda, Solvent-washing process using butylamine in fuel reprocessing, Nuclear technology 120 (1) (1997) 41-47, https://doi.org/10.13182/NT97-A35429.
- M. Watanabe, et al., Back-extraction of uranium (VI) from organophosphoric acid with hydrazine carbonate, Journal of Radioanalytical and Nuclear Chemistry 250 (2) (2001) 377-379, https://doi.org/10.1023/a:1017980520304.
- H. Goldacker, et al., A newly developed solvent wash process in nuclear fuel reprocessing decreasing the waste volume, Kerntechnik 18 (10) (1976) 426-430.
- H.T. Hahn, E.M. Vander Wall, TBP decomposition product behavior in post-extractive operations, Nuclear Science and Engineering 17 (4) (1963) 613-619, https://doi.org/10.13182/NSE63-A18453.
- Brian A. Powell, James D. Navratil, Major C. Thompson, Compounds of hexavalent uranium and dibutylphosphate in nitric acid systems, Solvent extraction and ion exchange 21 (3) (2003) 347-368, https://doi.org/10.1081/SEI-120020215.
- A.L. Rufus, et al., Dissolution of synthetic uranium dibutyl phosphate deposits in oxidizing and reducing chemical formulations, Journal of hazardous materials 254 (2013) 263-269, https://doi.org/10.1016/j.jhazmat.2013.03.050.
- A.L. Rufus, M.K. Dhanesh, S. Velmurugan, Dissolution of synthetic uranium dibutyl phosphate (U-DBP) in sodium EDTA and sodium carbonate based formulations, Progress in Nuclear Energy 100 (2017) 373-379, https://doi.org/10.1016/j.pnucene.2017.07.014.
- Sergei I. Stepanov, Alexander V. Boyarintsev, Reprocessing of spent nuclear fuel in carbonate media: problems, achievements, and prospects, Nuclear Engineering and Technology 54 (7) (2022)2339-2358 , doi:10.1016/j.net.2022.01.009.
- Steven Smith, et al., Dissolution of uranium oxides under alkaline oxidizing conditions, Journal of radioanalytical and nuclear chemistry 282 (2) (2009) 617-621, https://doi.org/10.1007/s10967-009-0182-8.
- John McGrady, et al., The kinetics and mechanism of H 2 O 2 decomposition at the U3O8 surface in bicarbonate solution, RSC advances 11 (46) (2021) 28940-28948, https://doi.org/10.1039/D1RA05580A.
- Chenxi Hou, et al., Ultrasonic-assisted dissolution of U3O8 in carbonate medium, Nuclear Engineering and Technology 55 (1) (2022) 63-70, https://doi.org/10.1016/j.net.2022.09.025.
- Chenxi Hou, et al., Dissolution of uranium dioxide powder in carbonate-peroxide solution, Journal of Radioanalytical and Nuclear Chemistry 331 (5) (2022) 2245-2252, https://doi.org/10.1007/s10967-022-08263-8.
- D.W. Tedder, E.P. Horwitz, Efficient strategies for partitioning actinides from alkaline wastes, Industrial & engineering chemistry research 44 (3) (2005) 606-613, https://doi.org/10.1021/ie0499207.
- A.S. Pente, et al., Study of different approaches for management of contaminated emulsified aqueous secondary waste, Desalination 232 (1-3) (2008) 206-215, https://doi.org/10.1016/j.desal.2008.01.010.
- M. Watanabe, et al., Back-extraction of tri-and tetravalent actinides from diisodecylphosphoric acid (DIDPA) with hydrazine carbonate, Journal of radioanalytical and nuclear chemistry 252 (1) (2002) 53-57, https://doi.org/10.1023/a:1015279519321.
- S.A.M. Refaey, F. Taha, A.M. Abd El-Malak, Corrosion and inhibition of stainless steel pitting corrosion in alkaline medium and the effect of Cl- and Br- anions, Applied Surface Science 242 (1-2) (2005) 114-120, https://doi.org/10.1016/j.apsusc.2004.08.003.
- Alec Groysman, Physicochemical Basics of Corrosion at Refineries' Units. Corrosion Problems and Solutions in Oil Refining and Petrochemical Industry, 32, 2017, pp. 17-36, https://doi.org/10.1007/978-3-319-45256-2_3.
- Huiyun Tian, et al., Effect of NH4+ on the pitting corrosion behavior of 316 stainless steel in the chloride environment, Journal of Electroanalytical Chemistry 894 (2021), 115368, https://doi.org/10.1016/j.jelechem.2021.115368.
- Tina M. Hayward, Igor M. Svishchev, Ramesh C. Makhija, Stainless steel flow reactor for supercritical water oxidation: corrosion tests, The Journal of supercritical fluids 27 (3) (2003) 275-281, https://doi.org/10.1016/S0896-8446(02)00264-4.
- N.J. Laycock, R.C. Newman, J. Stewart, The transpassive corrosion of stainless steel in stabilized alkaline peroxide solution, Corrosion science 37 (10) (1995) 1637-1642, https://doi.org/10.1016/0010-938X(95)00113-X.
- Chunhui Li, et al., An experimental study on the extraction mechanisms of Ce (IV) from HNO3 solutions using C4mimNTf2 as extractant, Journal of Radio-analytical and Nuclear Chemistry 331 (1) (2022) 365-373, https://doi.org/10.1007/s10967-021-08119-7.
- Erwann Legrand, et al., Effect of sea lice chemotherapeutant hydrogen peroxide on the photosynthetic characteristics and bleaching of the coralline alga Lithothamnion soriferum, Aquatic Toxicology 247 (2022), 106173, https://doi.org/10.1016/j.aquatox.2022.106173.
- Koji Oshita, et al., Synthesis of chitosan resin possessing a phenylarsonic acid moiety for collection/concentration of uranium and its determination by ICP-AES, Analytical and bioanalytical chemistry 390 (7) (2008) 1927-1932, https://doi.org/10.1007/s00216-008-1931-1.
- S. Maleki Dizaj, et al., Nanosizing of drugs: effect on dissolution rate, Research in pharmaceutical sciences 10 (2) (2015) 95.
- R.T. Loto, C.A. Loto, Effect of P-phenylediamine on the corrosion of austenitic stainless steel type 304 in hydrochloric acid, International Journal of Electrochemical Science 7 (10) (2012) 9423-9440, https://doi.org/10.1016/j.jpowsour.2012.06.040.
- Ray L. Frost, et al., A Raman spectroscopic study of the uranyl phosphate mineral parsonsite, Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering 37 (9) (2006) 879-891, https://doi.org/10.1002/jrs.1517.
- Ray L. Frost, et al., A Raman spectroscopic study of the uranyl phosphate mineral bergenite, Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy 66 (4-5) (2007) 979-984, doi:10.1016/j.saa.2006.04.036.
- C.S. Venkateswaran, The Raman spectra of ortho-phosphoric acid and some phosphates, Proceedings of the Indian Academy of Sciences-Section A 3 (1) (1936) 25-30, https://doi.org/10.1007/BF03046232.
- Wolfram W. Rudolph, Raman-and infrared-spectroscopic investigations of dilute aqueous phosphoric acid solutions, Dalton Transactions 39 (40) (2010) 9642-9653, https://doi.org/10.1039/C0DT00417K.
- Harumi Sato, et al., Infrared and Raman spectroscopy and quantum chemistry calculation studies of C-H/... O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoate, Journal of molecular structure 744 (2005) 35-46, https://doi.org/10.1016/j.molstruc.2004.10.069.
- Yoshinobu Abe, et al., Dissolution rates of alkaline rocks by carbonic acid: influence of solid/liquid ratio, temperature, and CO2 pressure, Chemical Engineering Research and Design 91 (5) (2013) 933-941, https://doi.org/10.1016/j.cherd.2012.09.001.
- Dong-Yong Chung, et al., Oxidative leaching of uranium from SIMFUEL using Na 2 CO 3-H 2 O 2 solution, Journal of radioanalytical and nuclear chemistry 284 (1) (2010) 123-129, https://doi.org/10.1007/s10967-009-0443-6.
- Elizangela A. Santos, Ana CQ. Ladeira, Recovery of uranium from mine waste by leaching with carbonate-based reagents, Environmental science & technology 45 (8) (2011) 3591-3597, https://doi.org/10.1021/es2002056.
- Shane M. Peper, et al., Kinetic study of the oxidative dissolution of UO2 in aqueous carbonate media, Industrial & engineering chemistry research 43 (26) (2004) 8188-8193, https://doi.org/10.1021/ie049457y.
- Kwang-Wook Kim, et al., Evaluation of the behavior of uranium peroxocarbonate complexes in Na-U (VI)-CO3-OH-H2O2 solutions by Raman spectroscopy, The Journal of Physical Chemistry A 116 (49) (2012) 12024-12031, https://doi.org/10.1021/jp307062u.
- Joan De Pablo, et al., The oxidative dissolution mechanism of uranium dioxide. I. The effect of temperature in hydrogen carbonate medium, Geochimica et Cosmochimica Acta 63 (1999) 3097-3103, https://doi.org/10.1016/S0016-7037(99)00237-9, 19-20.
- Kwang-Wook Kim, et al., Recovery of uranium from (U, Gd) O2 nuclear fuel scrap using dissolution and precipitation in carbonate media, Journal of nuclear materials 418 (1-3) (2011) 93-97, https://doi.org/10.1016/j.jnucmat.2011.06.019.
- Kwang-Wook Kim, et al., A conceptual process study for recovery of uranium alone from spent nuclear fuel by using high-alkaline carbonate media, Nuclear technology 166 (2) (2009) 170-179, https://doi.org/10.13182/NT09-A7403.
- Zanonato, Pier Luigi, et al., Chemical equilibria in the uranyl (vi)-peroxide-carbonate system; identification of precursors for the formation of poly-peroxometallates, Dalton Transactions 41 (38) (2012) 11635-11641, https://doi.org/10.1039/C2DT31282D.