과제정보
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT). (2020R1A4A3079853).
참고문헌
- D. Jo, J. Park, H. Chae, Development of thermal hydraulic and margin analysis code for steady state forced and natural convective cooling of plate type fuel research reactors, Prog. Nucl. Energy 71 (2014) 39-51. https://doi.org/10.1016/j.pnucene.2013.11.006
- H. Yoon, Y. Choi, K. Seo, S. Kim, Discharge header design inside a reactor pool for flow stability in a research reactor, Nucl. Eng. Technol. 52 (10) (2020) 2204-2220. https://doi.org/10.1016/j.net.2020.04.006
- K. Seo, I. Kim, K.-J. Park, M. Jung, H. Yoon, S. Kim, et al., An analysis of air-water flow phenomena due to a pipe break under sub-atmospheric pressures using TRACE, Nucl. Eng. Des. 374 (2021), 111064.
- I.K. Park, H.Y. Yoon, H.B. Park, Numerical approach to siphon break phenomena in a research reactor pool using the CUPID code, Nucl. Eng. Des. 326 (2018) 133-142. https://doi.org/10.1016/j.nucengdes.2017.11.001
- R. Kong, S. Kim, S. Bajorek, K. Tien, C. Hoxie, Effects of pipe size on horizontal two-phase flow: flow regimes, pressure drop, two-phase flow parameters, and drift-flux analysis, Exp. Therm. Fluid Sci. 96 (2018) 75-89. https://doi.org/10.1016/j.expthermflusci.2018.02.030
- N. Zuber, J.A. Findlay, Average Volumetric Concentration in Two-phase Flow Systems, 1965.
- H. Goda, T. Hibiki, S. Kim, M. Ishii, J. Uhle, Drift-flux model for downward two-phase flow, Int. J. Heat Mass Tran. 46 (25) (2003) 4835-4844. https://doi.org/10.1016/S0017-9310(03)00309-0
- D. Barnea, O. Shoham, Y. Taitel, Flow pattern transition for vertical downward two phase flow, Chem. Eng. Sci. 37 (5) (1982) 741-744. https://doi.org/10.1016/0009-2509(82)85034-3
- K. Kawanishi, Y. Hirao, A. Tsuge, An experimental study on drift flux parameters for two-phase flow in vertical round tubes, Nucl. Eng. Des. 120 (2-3) (1990) 447-458. https://doi.org/10.1016/0029-5493(90)90394-D
- T. Hibiki, M. Ishii, One-dimensional drifteflux model for two-phase flow in a large diameter pipe, Int. J. Heat Mass Tran. 46 (10) (2003) 1773-1790. https://doi.org/10.1016/S0017-9310(02)00473-8
- X. Shen, R. Matsui, K. Mishima, H. Nakamura, Distribution parameter and drift velocity for two-phase flow in a large diameter pipe, Nucl. Eng. Des. 240 (12) (2010) 3991-4000. https://doi.org/10.1016/j.nucengdes.2010.01.004
- Z. Li, G. Wang, M. Yousaf, X. Yang, M. Ishii, Flow structure and flow regime transitions of downward two-phase flow in large diameter pipes, Int. J. Heat Mass Tran. 118 (2018) 812-822. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.037
- C. Lu, R. Kong, S. Qiao, J. Larimer, S. Kim, S. Bajorek, et al., Frictional pressure drop analysis for horizontal and vertical air-water two-phase flows in different pipe sizes, Nucl. Eng. Des. 332 (2018) 147-161. https://doi.org/10.1016/j.nucengdes.2018.03.036
- G. Wang, Z. Li, M. Yousaf, X. Yang, M. Ishii, Experimental study on vertical downward air-water two-phase flow in a large diameter pipe, Int. J. Heat Mass Tran. 118 (2018) 919-930. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.065
- C. Dong, T. Hibiki, Drift-flux parameter modeling of vertical downward gas-liquid two-phase flows for interfacial drag force formulation, Nucl. Eng. Des. 378 (2021), 111185.
- S.H. Kang, H.S. Ahn, J.M. Kim, H.M. Joo, K.-Y. Lee, K. Seo, et al., Experimental study of siphon breaking phenomenon in the real-scaled research reactor pool, Nucl. Eng. Des. 255 (2013) 28-37. https://doi.org/10.1016/j.nucengdes.2012.09.032
- S.H. Kang, K.-Y. Lee, G.C. Lee, S.H. Kim, D.Y. Chi, K. Seo, et al., Investigation on effects of enlarged pipe rupture size and air penetration timing in real-scale experiment of siphon breaker, Nucl. Eng. Technol. 46 (6) (2014) 817-824. https://doi.org/10.5516/NET.03.2014.037
- H. Kim, J.-P. Park, D. Jang, D. Kim, Y.-G. Jung, S.-K. Park, et al., Development of phenomena identification and ranking tables (PIRTs) to implement research reactor-specific capability in SPACE code, Ann. Nucl. Energy 138 (2020), 107206.
- M.A. Hoq, M.M. Soner, M. Salam, S. Khanom, S. Fahad, Assessment of n-16 activity concentration in Bangladesh atomic energy commission triga research reactor, Nucl. Eng. Technol. 50 (1) (2018) 165-169. https://doi.org/10.1016/j.net.2017.11.006
- K.-Y. Lee, H.-G. Yoon, An Innovative Passive Residual Heat Removal System of an Open-Pool Type Research Reactor with Pump Flywheel and Gravity Core Cooling Tank, vol. 2015, Science and Technology of Nuclear Installations, 2015.
- K. Usui, Vertically downward two-phase flow,(II) Flow regime transition criteria, J. Nucl. Sci. Technol. 26 (11) (1989) 1013-1022. https://doi.org/10.1080/18811248.1989.9734422
- J. Jia, A. Babatunde, M. Wang, Void fraction measurement of gas-liquid two-phase flow from differential pressure, Flow Meas. Instrum. 41 (2015) 75-80. https://doi.org/10.1016/j.flowmeasinst.2014.10.010
- K. Usui, K. Sato, Vertically downward two-phase flow,(I) Void distribution and average void fraction, J. Nucl. Sci. Technol. 26 (7) (1989) 670-680. https://doi.org/10.1080/18811248.1989.9734366
- Y. Xue, H. Li, C. Hao, C. Yao, Investigation on the void fraction of gas-liquid two-phase flows in vertically-downward pipes, Int. Commun. Heat Mass Tran. 77 (2016) 1-8. https://doi.org/10.1016/j.icheatmasstransfer.2016.06.009
- O. Kashinsky, V. Randin, Downward bubbly gas-liquid flow in a vertical pipe, Int. J. Multiphas. Flow 25 (1) (1999) 109-138. https://doi.org/10.1016/S0301-9322(98)00040-8
- N. Clark, J. Van Egmond, E. Nebiolo, The drift-flux model applied to bubble columns and low velocity flows, Int. J. Multiphas. Flow 16 (2) (1990) 261-279. https://doi.org/10.1016/0301-9322(90)90058-Q
- K. Isao, I. Mamoru, Drift flux model for large diameter pipe and new correlation for pool void fraction, Int. J. Heat Mass Tran. 30 (9) (1987) 1927-1939. https://doi.org/10.1016/0017-9310(87)90251-1
- J.P. Schlegel, P. Sawant, S. Paranjape, B. Ozar, T. Hibiki, M. Ishii, Void fraction and flow regime in adiabatic upward two-phase flow in large diameter vertical pipes, Nucl. Eng. Des. 239 (12) (2009) 2864-2874. https://doi.org/10.1016/j.nucengdes.2009.08.004