DOI QR코드

DOI QR Code

Gd effect on microstructure and properties of the Modified-690 alloy for function structure integrated thermal neutron shielding

  • Cheng Zhang (Institute of Materials, Shanghai University) ;
  • Jie Pan (Institute of Materials, Shanghai University) ;
  • Zixie Wang (Institute of Materials, Shanghai University) ;
  • Zhaoyu Wu (Chengdu Vocational Technical College of Industry) ;
  • Qiliang Mei (Shanghai Nuclear Engineering Research & Design Institute Co., LTD.) ;
  • Qianxue Ding (Shanghai Nuclear Engineering Research & Design Institute Co., LTD.) ;
  • Jing Gao (Shanghai Nuclear Engineering Research & Design Institute Co., LTD.) ;
  • Xueshan Xiao (Institute of Materials, Shanghai University)
  • Received : 2022.04.25
  • Accepted : 2023.01.16
  • Published : 2023.05.25

Abstract

The new Modified-690Gd alloy, namely as Ni-30Cr-(10-x) Fe-xGd (x = 0.5, 1.0, 1.5,2.0, 3.0 wt%) for function structure integrated thermal neutron shielding has been prepared and characterized. The Modified-690Gd alloy was mainly composed of γ austenite matrix and (Ni, Cr, Fe)5Gd precipitated along grain boundaries. The new Modified-690Gd alloy had great mechanical properties, which had the tensile strength exceeding 620 MPa and the elongation being above 50%. Meanwhile, this alloy had excellent weldability and good corrosion resistance in boric acid. The new Modified-690Gd alloy is expected to be a kind of high efficiency thermal neutron shielding materials.

Keywords

Acknowledgement

This work was sponsored by the Science and Technology Plan Project of Sichuan Province under Contract No. 2021YJ0058.

References

  1. S. Zhao, Z.P. Huo, G.Q. Zhong, et al., Research progress of neutron and gamma ray composite shielding materials, J. Funct. Mater. 52 (2021) 3001-3015. 
  2. S.A.M. Issa, T.A. Hamdalla, A.A.A. Darwish, Effect of ErCl3 in gamma and neutron parameters for different concentration of ErCl3-SiO2 (EDFA) for the signal protection from nuclear radiation, J. Alloys Compd. 698 (2017) 234-240.  https://doi.org/10.1016/j.jallcom.2016.12.176
  3. R.E. Shore, H.L. Beck, J.D. Boice, Implications of recent epidemiologic studies for the linear nonthreshold model and radiation protection, J. Radiol. Prot. 38 (2018) 1217-1233.  https://doi.org/10.1088/1361-6498/aad348
  4. M.M. Sadawy, R.M. El, Shazly, Nuclear radiation shielding effectiveness and corrosion behavior of some steel alloys for nuclear reactor systems, Def. Technol. 15 (2019) 621-628.  https://doi.org/10.1016/j.dt.2019.04.001
  5. V.P. Singh, N.M. Badiger, Gamma ray and neutron shielding properties of some alloy materials, Ann. Nucl. Energy 64 (2014) 301-310.  https://doi.org/10.1016/j.anucene.2013.10.003
  6. C.G. Hernandez-Murillo, J.R.M. Contreras, L.A. Escalera-Velasco, X-ray and gamma ray shielding behavior of concrete blocks, Nucl. Eng. Technol. 52 (2020) 1792-1797.  https://doi.org/10.1016/j.net.2020.01.007
  7. E. Zorla, C. Ipbuker, A. Biland, M. Kiisk, S. Kovaljov, Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron, Nucl. Eng. Des. 313 (2017) 306-318.  https://doi.org/10.1016/j.nucengdes.2016.12.029
  8. R. Martellucci, D. Torsello, Potential of biochar reinforced concrete as neutron shielding material, Nucl. Eng. Technol. (2022) 3448-3451. 
  9. L.L. Yuan, Research on Preparative Technique of Metal Composite Contained Boron for Nuclear Shielding, Ph.D. Thesis, University of Science and Technology Beijing, China, 2016. 
  10. K.F. Li, Z.F. Wang, C.Y. Liu, High-temperature melting treatment of nuclear shielding Lead-Boron polyethylene, Bull. Chin. Ceram. Soc. 39 (2020) 552. 
  11. J. Park, S. Her, S. Cho, S.M. Woo, S. Bae, Synthesis and characterization of Polyethylene/B4C composite, and its neutron shielding performance in cementitious materials: experimental and simulation studies, Cem. Concr. Compos. 129 (2022), 104458. 
  12. Z.Z. Shao, C.L. Wang, Y.T. Song, Structural design and analysis of in wall shielding for ITER, Nucl. Fusion Plasma Phys. 4 (2011) 350. 
  13. E.P.R. Institute, Handbook on Neutron Absorber Materials for Spent Nuclear Fuel Applications, EPRI, USA, 2009. 
  14. F. Xue, Z.F. Luo, W.W. Yu, Z.X. Wang, L. Zhang, Investigation on microstructure and impact properties of borated stainless steel for high density storage racks, Adv. Mater. Res. 197 (2011) 1520-1523.  https://doi.org/10.4028/www.scientific.net/AMR.197-198.1520
  15. F.L. Serafini, M. Peruzzo, I. Krindges, M.F.C. Ordonez, D. Rodrigues, R.M. Souza, M.C.M. Farias, Microstructure and mechanical behavior of 316L liquid phase sintered stainless steel with boron addition, Mater. Char. 152 (2019) 253-264.  https://doi.org/10.1016/j.matchar.2019.04.009
  16. H. Lee Do, C. Jeon, D.J. Ha, C.P. Kim, B. Lee, S. Lee, Y.S. Shin, Effects of Cr and B contents on volume fraction of (Cr,Fe)2B and hardness in Fe-based alloys used for powder injection molding, Metall. Mater. Trans. A 43 (2012) 2237-2250.  https://doi.org/10.1007/s11661-012-1086-8
  17. J. Pan, Z.X. Wang, L. Yang, Q.L. Mei, Q.X. Ding, Z.Y. Wu, X.S. Xiao, Fabrication, and characterization of a novel FeCrAl matrix composite containing TiB2 neutron absorbers synthesized in situ, Mater. Char. 181 (2021), 111446. 
  18. R.B. Jones, C.M. Younes, P.J. Heard, R.K. Wild, P.E.J. Flewitt, The effect of the microscale distribution of boron on the yield strength of C-Mn steels subjected to neutron irradiation, Acta Mater. 50 (2002) 4395. 
  19. D.G. Cacuci, Handbook of Nuclear Engineering, Springer, US, 2010, https://doi.org/10.1007/978-0-387-98149-9. 
  20. S. Sathiyaraj, A. Senthilkumar, P. Muhammed Ameen, R. Sundar, V. Saseendran, Experimental investigations on mechanical properties of Al-B4C metal matrix composites, Mater. Today Proc. 45 (2021) 6372-6376.  https://doi.org/10.1016/j.matpr.2020.11.017
  21. Y.T. Zhou, Y.N. Zan, Q.Z. Wang, B.L. Xiao, Z.Y. Ma, X.L. Ma, Grain boundary segregation of alloying Cu induced intergranular corrosion of B4C-6061Al composite, Mater. Char. 173 (2021), 110930. 
  22. G. Arslan, F. Kapa, S. Turan, Quantitative X-ray diffraction analysis of reactive infiltrated boron carbide bide-aluminum composites, J. Eur. Ceram. Soc. 23 (2003) 1243. 
  23. Y.R. Wang, Y. Zhao, M.Z. Jiang, Research status in Neutron shielding materials with combined function and structural performance, J. Netshape Form. Eng. 11 (2019) 166. 
  24. J.N. Dupont, C.V. Robino, J.R. Michael, R.E. Mizia, D.B. Williams, Physical and welding metallurgy of Gd-enriched austenitic alloys for spent nuclear fuel applications Part I: stainless steel alloys, Weld. J. 83 (2004) 289-300. 
  25. C.V. Robino, J.N. DuPont, R.E. Mizia, J.R. Michael, D.B. Williams, E. Shaber, Development of Gd-enriched alloys for spent nuclear fuel applications - Part 1: preliminary characterization of small scale Gd-enriched stainless steels, J. Mater. Eng. Perform. 12 (2003) 206-214.  https://doi.org/10.1361/105994903770343367
  26. R.E. Mizia, P.J. Pinhero, John N. Dupont, C.V. Robino, T.E. Lister, Corrosion performance of a gadolinium containing stainless steel, J. Hepatol. 46 (2007) 100. 
  27. Michael J. Minicozzi, The Investigation of the Toughness of a Ni Based Alloy with Gd Enrichment for Spent Nuclear Waste Containment Systems, Ph.D. Thesis, Lehigh University, 2005. 
  28. R.E. Mizia, T.E. Lister, P.J. Pinhero, C.V. Robino, J.N. Dupont, Microstructure and corrosion performance of a neutron absorbing Ni-Cr-Mo-Cd alloy, Corrosion 18 (2003). 
  29. R.E. Mizia, T.E. Lister, P.J. Pinhero, T.L. Trowbridg, W.L. Hurt, C.V. Robino, J.J. Stephens, J.N. Dupont, Development and testing of an advanced neutron-absorbing gadolinium alloy for spent nuclear fuel storage, Nucl. Technol. 155 (2006) 133-148.  https://doi.org/10.13182/NT06-A3752
  30. T.E. Lise, R.E. Mizie, P.J. Pinhero, T.L. Trowbridg, K. delezene-Briggs, Studies of the corrosion properties of Ni-Cr-Mo-Gd neutron-absorbing alloys, Corrosion 61 (2005) 706-717.  https://doi.org/10.5006/1.3278205
  31. Y.K. Jae, H.J. Jae, K. Sung-Dae, H. Heon-Young, L. Tae-Ho, A new type of gadolinium-rich precipitate in alloy steels, J. Nucl. Mater. 542 (2020), 152462. 
  32. A. Dhooge, R.E. Dolby, J. Sebille, R. Steinmetz, A.G. Vinckier, A review of work related to reheat cracking in nuclear reactor pressure vessel steels, Int. J. Pres. Ves. Pip. 6 (1978) 329-409.  https://doi.org/10.1016/0308-0161(78)90023-6
  33. H.B. Park, Y.H. Kim, B.W. Lee, K.S. Rheem, Effect of heat treatment on fatigue crack growth rate of Inconel 690 and Inconel 600, J. Nucl. Mater. 231 (1996) 204-212.  https://doi.org/10.1016/0022-3115(96)00372-8
  34. T. Baldridge, G. Poling, E. Foroozmehr, R. Kovacevic, T. Metz, V. Kadekar, M.C. Gupta, Laser cladding of Inconel 690 on Inconel 600 superalloy for corrosion protection in nuclear applications, Opt Laser. Eng. 51 (2013) 180-184.  https://doi.org/10.1016/j.optlaseng.2012.08.006
  35. J.J. Kai, M.N. Liu, The effects of heat treatment on the carbide evolution and the chromium depletion along grain boundary of Inconel 690 alloy, Scripta Metall. 23 (1989) 17-22.  https://doi.org/10.1016/0036-9748(89)90085-9
  36. GB/T 228.1--2010, Metallic Materials-Tensile Testing at Ambient Temperature, China Standard Press, People's Republic of China, 2010. 
  37. A.D. Pelton, Chapter 6-PHASE diagrams, in: R.W. Cahn, P. Haasen† (Eds.), Physical Metallurgy, fourth ed., North-Holland, Oxford, 1996, pp. 471-533. 
  38. V.D. de Jesus, V. Barthem, I.S. Oliveira, A.P. Guimaraes, NMR study of Gd-Ni intermetallic compounds, J. Magn. Magn Mater. 177 (1998) 1125-1127.  https://doi.org/10.1016/S0304-8853(97)00315-6
  39. C.A. Smith, D.D. Keiser, B.D. Miller, A. Aitkaliyeva, Comparison of manual and automated image analysis techniques for characterization of fission gas pores in irradiated U-Mo fuels, Micron 119 (2019) 98-108.  https://doi.org/10.1016/j.micron.2019.01.008
  40. Z. Rahou, K. Mabdouk, Thermodynamic reassessment of Gd-Ni system, J. Alloy. Comp. 648 (2015) 346-352.  https://doi.org/10.1016/j.jallcom.2015.06.201
  41. M.H. Yoo, Slip, twinning, and fracture in hexagonal close-packed metals, Metall. Mater. Trans. A 12 (1981) 409-418.  https://doi.org/10.1007/BF02648537
  42. V.L.B. de Jesus, I.S. Oliveira, P.C. Riedi, A.P. Guimaraes, 155,157Gd NMR study of Gd-Ni intermetallic compounds, J. Magn. Magn Mater. 212 (2000) 125-137.  https://doi.org/10.1016/S0304-8853(99)00788-X
  43. GB11806-2004, Regulation of Safe Transportation of Radioactive Materials, National Standards of the People's Republic of China, 2004. 
  44. N.D. Ryan, U.F. Kocks, A review of the stages of work hardening, Solid State Phenom. 35 (1993) 1-18. 
  45. G. Yang, S.Y. Ma, K. Du, et al., Interactions between dislocations and twins in deformed titanium aluminide crystals, J. Mater. Sci. Technol. 35 (2019) 1005, 0302. 
  46. J. Hu, L.X. Du, J.J. Wang, et al., Microstructures and mechanical properties of a new as-hot-rolled high-strength DP steel subjected to different cooling schedules, Metall. Mater. Trans A. 44 (2013) 4937-4947.  https://doi.org/10.1007/s11661-013-1839-z
  47. S.P. Tsai, C.H. Jen, H.W. Yen, C.Y. Chen, et al., Effects of interphase TiC precipitates on tensile properties and dislocation structures in a dual phase steel, Mater. Char. 123 (2017) 153-158.  https://doi.org/10.1016/j.matchar.2016.11.023
  48. J.R. Mianroodi, P. Shanthraj, P. Kontis, et al., Atomistic phase field chemomechanical modeling of dislocation-solute-precipitate interaction in Ni-Al-Co, Acta Mater. 175 (2019) 250-261.  https://doi.org/10.1016/j.actamat.2019.06.008
  49. P. Castany, F. Pettinari-Sturmel, J. Douin, A. Coujou, In situ transmission electron microscopy deformation of the titanium alloy Ti-6Al-4V: interface behaviour, Mater. Sci. Eng. A 483e484 (2008) 719-722.  https://doi.org/10.1016/j.msea.2006.10.183
  50. L. Huang, Z. Sun, Z.K. Yin, Y. Wang, L. Yin, Tensile behavior and deformation mechanism of a bimodal microstructure with microtextured region in Ti6242S alloy, J. Alloys Compd. 905 (2022), 164206. 
  51. X.Z. Lv, J.X. Zhang, H. Harada, Twin-dislocation and twin-twin interactions during cyclic deformation of a nickel-base single crystal TMS-82 superalloy, Int. J. Fatigue 66 (2014) 246-251.  https://doi.org/10.1016/j.ijfatigue.2014.04.012
  52. H.T. Lee, C.T. Chen, J.L. Wu, Numerical and experimental investigation into effect of temperature field on sensitization of Alloy 690 butt welds fabricated by gas tungsten arc welding and laser beam welding, J. Marer. Process. Tech. 210 (2012) 1636-1645.  https://doi.org/10.1016/j.jmatprotec.2010.05.012
  53. A. Rapetti, F. Christien, F. Tancret, P. Todeschini, S. Hendili, Effect of composition on ductility dip cracking of 690 nickel alloy during multipass welding, Mater. Today Commun. 24 (2020), 101163. 
  54. K. Kadoi, T. Uegaki, S. Kenji, Y. Motomichi, New measurement technique of ductility curve for ductility-dip cracking susceptibility in Alloy 690 welds, Mater. Sci. Eng. A 672 (2016) 59-64.  https://doi.org/10.1016/j.msea.2016.06.062
  55. K. Kota, H. Makoto, S. Kenji, O. Takeshi, Ductility-dip cracking susceptibility in dissimilar weld metals of alloy 690 filler metal and low alloy steel, Mater. Sci. Eng. A 756 (2019) 92-97.  https://doi.org/10.1016/j.msea.2019.04.035
  56. C. Gao, Y. Ma, L.Z. Tang, P. Wang, X. Zhang, Microstructural evolution and mechanical behavior of friction spot welded 2198-T8 Al-Li alloy during aging treatment, Mater. Des. 115 (2017) 224-230.  https://doi.org/10.1016/j.matdes.2016.11.045
  57. S.G. Wang, Y. Huang, L. Zhao, Effects of different aging treatments on microstructures and mechanical properties of Al-Cu-Li alloy joints welded by electron beam welding, Chin. J. Aeronaut. 31 (2018) 363-369.  https://doi.org/10.1016/j.cja.2017.07.002
  58. C. Gao, Z.X. Zhu, J. Han, H.J. Li, Correlation of microstructure and mechanical properties in friction stir welded 2198-T8 Al-Li alloy, Mater. Sci. Eng. A 639 (2015) 489-499.  https://doi.org/10.1016/j.msea.2015.05.038
  59. T.B. Zhao, Y.S. Sato, R.S. Xiao, T. Huang, J.Q. Zhang, Hardness distribution and aging response associated with precipitation behavior in a laser pressure welded Al-Li alloy 2198, Mater. Sci. Eng. A 808 (2021), 140946. 
  60. Z. Liu, P. Li, L. Xiong, T. Liu, High-temperature tensile deformation behavior and microstructure evolution of Ti55 titanium alloy, Mater. Sci. Eng. A 680 (2017) 259-269.  https://doi.org/10.1016/j.msea.2016.10.095
  61. R. Rachamin, E. Fridman, A. Galperin, Design and analysis of an innovative pressure tube light water reactor witch variable moderator control, Ann. Nucl. Energy 60 (2013) 248-255.  https://doi.org/10.1016/j.anucene.2013.05.011
  62. H. Ueda, H. Tanaka, Y. Sakurai, The improvement of the energy resolution in epi-thermal neutron region of Bonner sphere using boric acid water solution moderator, Appl. Radiat. Isot. 104 (2015) 25-28.  https://doi.org/10.1016/j.apradiso.2015.06.020
  63. Z.M. Zhang, J.Q. Wang, E.H. Han, W. Ke, Influence of later-dissolved oxygen on microstructural changes in oxide films formed on Alloy 690TT in hydrogenated primary water, Corrosion Sci. 94 (2015) 245-254.  https://doi.org/10.1016/j.corsci.2015.02.003
  64. J.L. Lv, Effect of grain size on mechanical property and corrosion resistance of the Ni-based alloy 690, J. Mater. Sci. Technol. 34 (2018) 1685-1691.  https://doi.org/10.1016/j.jmst.2017.12.017
  65. B.M. Wei, Theory and Application of Metal Corrosion, Chemical Industry Press, 1984. 
  66. Q.L. Wei, B. Yang, Y. Wang, T. Yang, Y.B. Liu, Monte Carlo simulation of low-energy neutron attenuation performance in boron steel, Appl. Mech. Mater. 539 (2014) 688-691. https://doi.org/10.4028/www.scientific.net/AMM.539.688