DOI QR코드

DOI QR Code

X-ray/gamma radiation shielding properties of Aluminium-Bariume-Zinc Oxide nanoparticles synthesized via low temperature solution combustion method

  • K.V. Sathish (Department of Physics, Government College for Women) ;
  • K.N. Sridhar (Department of Physics, Government First Grade College) ;
  • L. Seenappa (Department of Physics, Government College for Women) ;
  • H.C. Manjunatha (Department of Physics, Government College for Women) ;
  • Y.S. Vidya (Department of Physics, Lal Bahadur Shastri Government First Grade College) ;
  • B. Chinnappa Reddy (Department of Physics, Government First Grade College) ;
  • S. Manjunatha (Department of Chemistry, B.M.S College of Engineering) ;
  • A.N. Santhosh (Department of Mechanical Engineering, New Horizon College of Engineering) ;
  • R. Munirathnam (Department of Physics, Government College for Women) ;
  • Alfred Cecil Raj (Department of Physics, St.Joseph's College) ;
  • P.S. Damodara Gupta (Department of Physics, Government College for Women) ;
  • B.M. Sankarshan (Department of Physics, The National Institute of Engineering)
  • Received : 2022.06.11
  • Accepted : 2023.02.01
  • Published : 2023.05.25

Abstract

For the first time Aluminium-BariumeZinc oxide nanocomposite (ZABONC) was synthesized by solution combustion method where calcination was carried out at low temperatures (600℃) to study the electromagnetic (EM) (X/γ) radiation shielding properties. Further for characterization purpose standard techniques like PXRD, SEM, UV-VISIBLE, FTIR were used to find phase purity, functional groups, surface morphology, and to do structural analysis and energy band gap determination. The PXRD pattern shows (hkl) planes corresponding to spinel cubic phase of ZnAl2O4, cubic Ba(NO3)2, α and γ phase of Al2O3 which clearly confirms the formation of complex nano composite. From SEM histogram mean size of nano particles was calculated and is in the order of 17 nm. Wood and Tauc's relation direct energy band gap calculation gives energy gap of 2.9 eV. In addition, EM (X/γ) shielding properties were measured and compared with the theoretical ones using standard procedures (NaI (Tl) detector and multi channel analyzer MCA). For energy above 356 keV the measured shielding parameters agree well with the theory, while below this value slight deviation is observed, due to the influence of atomic/crystallite size of the ZABONC. Hence synthesized ZABONC can be used as a shielding material in EM (X/γ) radiation shielding.

Keywords

References

  1. F. Ebrahimi, Nanocomposites: New Trends and Developments, BoD-Books on Demand, 2012.
  2. B. Ates, S. Koytepe, A. Ulu, C. Gurses, V.K. Thakur, Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources, Chemical Reviews 120 (2020) 9304.
  3. E. Omanovic-Miklicanin, A. Badnjevic, A. Kazlagic, M. Hajlovac, Nano-composites: A brief review, Health and Technology 10 (2020) 51.
  4. L. Yu, K. Dean, L. Li, Polymer blends and composites from renewable resources, Progress in polymer science 31 (2006) 576.
  5. J.M. Arenas, C. Alia, J.J. Narbon, R. Ocana, C. Gonzalez, Considerations for the industrial application of structural adhesive joints in the aluminium-composite material bonding, Composites B: Engineering 44(2013) 417.
  6. N. Rastogi, Design of Composite Driveshafts for Automotive Applications, in: Tech. Rep, SAE Technical Paper, 2004.
  7. S. Mura, Y. Jiang, I. Vassalini, A. Gianoncelli, I. Alessandri, G. Granozzi, L. Calvillo, N. Senes, S. Enzo, P. Innocenzi, et al., Graphene oxide/iron oxide nanocomposites for water remediation, ACS Applied Nano Materials 1 (2018) 6724.
  8. Y.H. Ng, A. Iwase, N.J. Bell, A. Kudo, R. Amal, Semiconductor/reduced graphene oxide nanocomposites derived from photocatalytic reactions, Catalysis today 164 (2011) 353.
  9. A.M. Pourrahimi, R.T. Olsson, M.S. Hedenqvist, The role of interfaces in polyethylene/metal-oxide nanocomposites for ultrahigh-voltage insulating materials, Advanced Materials 30 (2018), 1703624.
  10. R. Bogue, Nanocomposites: a review of technology and applications, Assembly Automation (2011).
  11. J. Arjomandi, J.Y. Lee, F. Ahmadi, M.H. Parvin, H. Moghanni-Bavil-Olyaei, Spectroelectrochemistry and electrosynthesis of polypyrrole supercapacitor electrodes based on gamma aluminum oxide and gamma iron (iii) oxide nanocomposites, Electrochimica Acta 251 (2017) 212.
  12. F.S. Razavi, A. Sobhani, O. Amiri, M. Ghiyasiyan-Arani, M. Salavati-Niasari, Green sol-gel auto-combustion synthesis, characterization and investigation of the electrochemical hydrogen storage properties of barium cobalt oxide nanocomposites with maltose, International Journal of Hydrogen Energy 45 (2020), 17662.
  13. E.E. Elemike, D.C. Onwudiwe, M. Singh, Eco-friendly synthesis of copper oxide, zinc oxide and copper oxideezinc oxide nanocomposites, and their anticancer applications, Journal of Inorganic and Organometallic Polymers and Materials 30 (2020) 400.
  14. K.M. Kaky, M.I. Sayyed, A.A. Ati, M.H.A. Mhareb, K.A. Mahmoud, S.O. Baki, M.A. Mahdi, Germanate oxide impacts on the optical and gamma radiation shielding properties of teo2-zno-li2o glass system, Journal of Non-Crystalline Solids 546 (2020), 120272.
  15. M.I. Sayyed, Y.S. Rammah, A.S. Abouhaswa, H.O. Tekin, B.O. Elbashir, Zno-b2o3-pbo glasses: synthesis and radiation shielding characterization, Physica B: Condensed Matter 548 (2018) 20.
  16. V.P. Singh, N.M. Badiger, J. Kaewkhao, Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study, Journal of non-crystalline solids 404 (2014) 167.
  17. B.C. Reddy, H.C. Manjunatha, Y.S. Vidya, K.N. Sridhar, U.M. Pasha, L. Seenappa, C.M. Kumar, B. Sadashivamurthy, N. Dhananjaya, K.V. Sathish, et al., Radiation shielding, photoluminescence and antimicrobial properties of magnesium ferrite synthesized via low temperature solution combustion method, Progress in Nuclear Energy 142 (2021), 103988.
  18. F. Ansari, M. Bazarganipour, M. Salavati-Niasari, Nitio3/nife2o4 nano-composites: simple sol-gel auto-combustion synthesis and characterization by utilizing onion extract as a novel fuel and green capping agent, Materials Science in Semiconductor Processing 43 (2016) 34.
  19. K. Kasraee, S.A. Tayebifard, H. Roghani, M.S. Asl, Preparation of b4c-sic-hfb2 nanocomposite by mechanically activated combustion synthesis, Ceramics International 46 (2020), 12288.
  20. C. Suryanarayana, Synthesis of nanocomposites by mechanical alloying, Journal of Alloys and Compounds 509 (2011) S229.
  21. B.C. Reddy, H.C. Manjunatha, Y.S. Vidya, K.N. Sridhar, U.M. Pasha, L. Seenappa, C. Mahendrakumar, B. Sadashivamurthy, N. Dhananjaya, B.M. Sankarshan, et al., Synthesis and characterization of multi functional nickel ferrite nanoparticles for x-ray/gamma radiation shielding, display and antimicrobial applications, Journal of Physics and Chemistry of Solids (2021), 110260.
  22. H.C. Manjunatha, Influence of gamma irradiation on conductivity of yba2-cu3o7, Radiation Physics and Chemistry 113 (2015) 24.
  23. S. Manohara, S. Hanagodimath, L. Gerward, Photon interaction and energy absorption in glass: a transparent gamma ray shield, Journal of Nuclear materials 393 (2009) 465.
  24. S.-F. Wang, G.-Z. Sun, L.-M. Fang, L. Lei, X. Xiang, X.-T. Zu, A comparative study of znal 2 o 4 nanoparticles synthesized from different aluminum salts for use as fluorescence materials, Scientific reports 5 (2015) 1.
  25. M. Nishi, S.-Y. Chen, H. Takagi, Mild ammonia synthesis over ba-promoted ru/mpc catalysts: effects of the ba/ru ratio and the mesoporous structure, Catalysts 9 (2019) 480.
  26. L. Renuka, K.S. Anantharaju, S.C. Sharma, H. Nagabhushana, Y.S. Vidya, H.P. Nagaswarupa, S.C. Prashantha, A comparative study on the structural, optical, electrochemical and photocatalytic properties of zro2 nanooxide synthesized by different routes, Journal of Alloys and Compounds 695 (2017) 382.
  27. A. Cervellino, C. Giannini, A. Guagliardi, Determination of nanoparticle structure type, size and strain distribution from x-ray data for monatomic fccderived non-crystallographic nanoclusters, Journal of applied crystallography 36 (2003) 1148.
  28. N.L. Aluker, M.E. Herrmann, Y.M. Suzdaltseva, A spectrophotometric study of nitrate and nitrite salts and their aqueous solutions, Optics and Spectroscopy 127 (2019) 991.
  29. N. Alves, W. B. Ferraz, and L. O. Faria, Carbon Doped Lanthanum Aluminate (Laalo_3: C) Synthesized by Solid State Reaction for Application in Uv Thermoluminescent Dosimetry.
  30. W. Muhammad, N. Ullah, M. Haroon, B.H. Abbasi, Optical, morphological and biological analysis of zinc oxide nanoparticles (zno nps) using papaver somniferum l, journal RSC Adv 9 (2019) 29541.
  31. M. Mahinroosta, A. Allahverdi, Production of nanostructured γ-alumina from aluminum foundry tailing for catalytic applications, International Nano Letters 8 (2018) 255.
  32. R.B. Bohn, S.A. Sandford, L.J. Allamandola, D.P. Cruikshank, Infrared spectroscopy of triton and pluto ice analogs: the case for saturated hydrocarbons, Icarus 111 (1994) 151.
  33. R.T. Kumar, N.C. Sagaya Selvam, T. Adinaveen, L.J. Kennedy, J.J. Vijaya, Strontium (ii)-added coal2o4 nanocatalysts for the selective oxidation of alcohols, Reaction kinetics, mechanisms and catalysis 106 (2012) 379.
  34. S. Alexander, L. Morrow, A.M. Lord, C.W. Dunnill, A.R. Barron, ph-responsive octylamine coupling modification of carboxylated aluminium oxide surfaces, Journal of Materials Chemistry A 3 (2015), 10052.
  35. J.H. Hubbell, S.M. Seltzer, Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 Kev to 20 Mev for Elements z= 1 to 92 and 48 Additional Substances of Dosimetric Interest, 1995.