DOI QR코드

DOI QR Code

BDD 전극을 이용한 축산폐수 처리의 적용성 평가

Evaluation of the Applicability of Livestock Wastewater Treatment using Boron-Doped Diamond (BDD) Electrodes

  • 투고 : 2023.04.04
  • 심사 : 2023.05.30
  • 발행 : 2023.06.30

초록

In this study, we evaluated the treatment efficiency of livestock wastewater by altering the current density using boron-doped diamond (BDD) electrodes. As the current density was adjusted from 10 to 35 mA/cm2, the removal efficiency of organic matter increased from 22.2 to 71.5%. Similar to that of organic matter, the removal efficiency of color increased with increasing current density up to 85.7%, indicating a higher removal efficiency for color than that of organic matter. The removal efficiency of ammonia nitrogen increased from 14.6 to 53.3% as the current density increased, but it was lower than that of organic matter. In addition, the removal of organic matter, color, and ammonia nitrogen followed first-order reactions, according to the reaction rate analysis. The energy consumption ranged from 4.87 to 8.33 kWh/kg COD, and it was found that the organic matter removal efficiency was more efficient at high current densities. Based on various analyses, the optimal current density was 20 mA/cm2, and the corresponding energy consumption was 6.824 kWh/kg COD.

키워드

과제정보

본 논문은 경기도형 연구자 중심의 R&D지원(과제번호#2022-011)에 의해 수행되었습니다.

참고문헌

  1. Anglada, A., Urtiaga, A., Ortiz, I., 2009, Pilot scale performance of the electro-oxidation of landfill leachate at boron-doped diamond anodes, Environ. Sci. Technol., 43, 2035-2040. https://doi.org/10.1021/es802748c
  2. Anglada, A., Urtiaga, A., Ortiz, I., Mantzavinos, D., Diamadopoulos, E., 2011, Boron-doped diamond anodic treatment of landfill leachate: Evaluation of operating variables and formation of oxidation by-products, Water Res., 45, 828-838. https://doi.org/10.1016/j.watres.2010.09.017
  3. Asaithambi, P., Govindarajan, R., Yesuf, M. B., Alemayehu, E., 2020, Removal of color, COD and determination of power consumption from landfill leachate wastewater using an electrochemical advanced oxidation processes, Sep. Purif. Technol., 233, 115935.
  4. Boo, C. S., 2001, The removal characteristics of organic matters and ammonia in the aquacultural effluents by electrolysis, M.S. Dissertation, Cheju University, Cheju, Korea.
  5. de Toledo, W. D. M. C., Pinheiro, R. A., Trava-Airoldi, V. J., Corat, E. J., 2022, Development of boron-doped diamond (BDD) deposited on carbon nanotubes (CNT) to form BDD/CNT structures relevant for electrochemical degradation, Diam. Relat. Mater., 127, 109159.
  6. Degermenci, G. D., 2021, Removal of reactive azo dye using platinum-coated titanium electrodes with the electro-oxidation process, Desal. Water Treat., 218, 436-443. https://doi.org/10.5004/dwt.2021.26981
  7. Diaz, V., Ibanez, R., Gomez, P., Urtiaga, A. M., Ortiz, I., 2011, Kinetics of electro-oxidation of ammonia-N, nitrites and COD from a recirculating aquaculture saline water system using BDD anodes, Water Res., 45, 125-134. https://doi.org/10.1016/j.watres.2010.08.020
  8. Ding, J., Zhao, Q., Zhang, Y., Wei, L., Li, W., Wang, K., 2015, The eAND process: Enabling simultaneous nitrogen-removal and disinfection for WWTP effluent, Water Res., 74, 122-131. https://doi.org/10.1016/j.watres.2015.02.005
  9. Ghaly, A. E., Ananthashankar, R., Alhattab, M., Ramakrishnan, V. V., 2014, Production, characterization and treatment of textile effluents: a critical review, J. Chem. Eng. Process Technol., 5, 1000182.
  10. Han, S. H., 2001, Preparations of platinum compound/Ti electrode and characteristics of electrolysis on dye wastewater, Ph. D. Dissertation, Kwangwoon University, Seoul, Korea.
  11. Huang, K. L., Wei, K. C., Chen, M. H., Ma, C. Y., 2018, Removal of organic and ammonium nitrogen pollutants in swine wastewater using electrochemical advanced oxidation, Int. J. Electrochem. Sci., 13, 11418-11431. https://doi.org/10.20964/2018.12.32
  12. Ismail, G. A., Sakai, H., 2022, Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal, Chemosphere, 291, 132906.
  13. Kang, J. H., 2020, Characteristics of dyeing wastewater treatment using Electrolysis, Ph. D. Dissertation, Pusan University, Busan, Korea.
  14. Kim, D. S., Park, Y. S., 2008, Comparison study of dyestuff wastewater treatment by the coupled photocatalytic oxidation and biofilm process, Chem. Eng. J., 139, 256-263. https://doi.org/10.1016/j.cej.2007.07.095
  15. Kumar, A., Srivastava, N. K., Gera, P., 2021, Removal of color from pulp and paper mill wastewater- methods and techniques- A review, J. Environ. Manage., 298, 113527.
  16. Lee, C. Y., 2008, Treatment of organic matter and nitrogen in wastewater using electrolysis, Ph. D. Dissertation, Wonkwang University, Iksan, Korea.
  17. Lee, J. H., Choi, H. L., 2015, Livestock manure nutrients flow analysis of integrated crop-livestock farming model reflecting the regional characteristics, J. of KORRA, 23, 36-46. https://doi.org/10.17137/korrae.2015.23.2.036
  18. Lee, S. H., Lim, C. S., Yinhua, Q., Kim, C. G., Im, J. B., 2022, Economic evaluation of manure treatment methods considering manure output and nutrient balance by regions, Korean Journal of Agricultural Management and Policy, 49, 581-599. https://doi.org/10.30805/KJAMP.2022.49.4.581
  19. Lopez-Grimau, V., Gutierrez, M. C., 2006, Decolourisation of simulated reactive dyebath effluents by electrochemical oxidation assisted by UV light, Chemosphere, 62, 106-112. https://doi.org/10.1016/j.chemosphere.2005.03.076
  20. Okur, M. C., Akyol, A., Nayir, T. Y., Kara, S., Ozturk, D., Civas, A., 2022, Performance of Ti/RuO2-IrO2 electrodes and comparison with BDD electrodes in the treatment of textile wastewater by electro-oxidation process, Chem. Eng. Res. Des., 183, 398-410. https://doi.org/10.1016/j.cherd.2022.05.016
  21. Ornelas Davila, O., Lacalle Bergeron, L., Davila Jimenez, M. M., Sires, I., Brillas, E., Roig Navarro, A. F., Beltran Arandes, J., Sancho Llopis, J. V., 2021, Study of the electrochemical oxidation of 4,6-dimethyldibenzothiophene on a BDD electrode employing different techniques, J. Electroanal. Chem., 894, 115364.
  22. Park, Y. S., 2008, Removal of Rhodamine B in water by ultraviolet radiation combined with electrolysis(I), J. Env. Hlth. Sci., 34, 439-445. https://doi.org/10.5668/JEHS.2008.34.6.439
  23. Patel, P. S., Bandre, N., Saraf, A., Ruparelia, J. P., 2013, Electro-catalytic materials (electrode materials) in electrochemical wastewater treatment, Procedia Eng., 51, 430-435. https://doi.org/10.1016/j.proeng.2013.01.060
  24. Perez, G., Fernandez-Alba, A. R., Urtiaga, A. M., Ortiz, I., 2010, Electro-oxidation of reverse osmosis concentrates generated in tertiary water treatment, Water Res., 44, 2763-2772. https://doi.org/10.1016/j.watres.2010.02.017
  25. Piya-areetham, P., Shenchunthichai, K., Hunsom, M., 2006, Application of electrooxidation process for treating concentrated wastewater from distillery industry with a voluminous electrode, Water Res., 40, 2857-2864. https://doi.org/10.1016/j.watres.2006.05.025
  26. Radha, K. V., Sridevi, V., Kalaivani, K., 2009, Electrochemical oxidation for the treatment of textile industry wastewater, Bioresour. Technol., 100, 987-990. https://doi.org/10.1016/j.biortech.2008.06.048
  27. Rao, N. N., Rohir, M., Nitin, G., Parameswaran, P. N., Astik, J. K., 2009, Kinetics of electrooxidation of landfill leachate in a three-dimensional carbon bed electrochemical reactor, Chemosphere, 76, 1206-1212. https://doi.org/10.1016/j.chemosphere.2009.06.009
  28. Sahinkaya, S., 2013, COD and color removal from synthetic textile wastewater by ultrasound assisted electro-fenton oxidation process, J. Ind. Eng. Chem., 19, 601-605. https://doi.org/10.1016/j.jiec.2012.09.023
  29. Shin, C. H., 2015, Design of a water reuse system combined with a fiber filtration and electrolysis, J. Environ. Sci. Int., 24, 1385-1391. https://doi.org/10.5322/JESI.2015.24.11.1385
  30. Shin, J. H., 2019, Removal of nitrogen compounds in wastewater through electrolysis, M.S. Dissertation, Yonsei University, Seoul, Korea.
  31. Tang, Y., Liu, M., He, D., Pan, R., Dong, W., Feng, S., Ma, L., 2022, Efficient electrochemical degradation of X-GN dye wastewater using porous boron-doped diamond electrode, Chemosphere, 307, 135912.
  32. Tauchert, E., Schneider, S., Morais, J. L., Peralta-Zamora, P., 2006, Photochemically-assisted electrochemical degradation of landfill leachate, Chemosphere, 64, 1458-1463. https://doi.org/10.1016/j.chemosphere.2005.12.064
  33. Ukundimana, Z., Omwene, P. I., Gengec, E., Can, O. T., Kobya, M., 2018, Electrooxidation as post treatment of ultrafiltration effluent in a landfill leachate MBR treatment plant: Effects of BDD, Pt and DSA anode types, Electrochim. Acta, 286, 252-263. https://doi.org/10.1016/j.electacta.2018.08.019
  34. Veli, S., Arslan, A., Isgoren, M., Bingol, D., Demiral, D., 2021, Experimental design approach to COD and color removal of landfill leachate by the electrooxidation process, Environ. Chall., 5, 100369.
  35. Yao, J., Zhou, M., Wen, D., Xue, Q., Wang, J., 2016, Electrochemical conversion of ammonia to nitrogen in non-chlorinated aqueous solution by controlling pH value, J. Electroanal. Chem., 776, 53-58. https://doi.org/10.1016/j.jelechem.2016.06.040
  36. Zhang, Y. H., Zhu, L., Guo, X., Zhang, W. J., Shao, X., Yang, J., 2023, Modified W, Ti-doped IrO2 anode for efficient organic contaminant oxidation in livestock wastewater, J. Electroanal. Chem., 931, 117192.