Acknowledgement
논문에서 사용한 복부 CT 영상 데이터를 제공해주신 세브란스병원 영상의학과 임준석 교수님께 감사의 말씀을 전합니다. 이 논문은 서울여자대학교 학술연구비의 지원에 의한 것임(2023-0092).
References
- P. R. Ros, and K. J. Mortele, "Diffuse liver disease." Clinics in liver disease, pp. 181-201, 2002.
- S. Manfredi, C. Lepage, C. Hatem, O. Coatmeur, J. Faivre, and AM. Bouvier, "Epidemiology and management of liver metastases from colorectal cancer," Ann Surg 244, pp. 254-259, 2006. https://doi.org/10.1097/01.sla.0000217629.94941.cf
- G. Bengtsson, G. Carlsson, L. Hafstrom, and P. E. Jonsson, "Natural. history of patients with untreated liver metastases from colorectal cancer." The American Journal of Surgery, pp. 586-589, 1981.
- M. Nino-Murcia, E.W. Olcott, R.B. Jeffrey, R.L. Lamm, C.F. Beaulieu, and K.A. Jain, "Focal liver lesions: pattern-based classification scheme for enhancement at arterial phase CT," Radiology, 215, pp. 746-751, 2000. https://doi.org/10.1148/radiology.215.3.r00jn03746
- C.C. Chang, H.H. Chen, Y.C. Chang, M.Y. Yang, C.M. Lo, W.C. Ko, Y.F. Lee, K.L. Liu, and R.F. Chang, "Computer-aided diagnosis of liver tumors on computed tomography images," Comput Methods Prog Biomed, 145, pp. 45-51, 2017. https://doi.org/10.1016/j.cmpb.2017.04.008
- A. Radford, L. Metz, and S. Chintala, "Unsupervised representation learning with deep convolutional generative adversarial networks." International Conference on Learning Representations(ICLR), 2016.
- Karras, T., Aila, T., Laine, S., Lehtinen, J., "Progressive growing of GANs for improved quality, stability, and variation." ICLR, 2017.
- Karras, T., Laine, S., and Aila, T., "A style-based generator. architecture for generative adversarial networks." CVPR, 2019.
- H. Salehinejad, S. Valaee, T. Dowdell, E. Colak, and J. Barfett, "Generalization of deep neural networks for chest pathology classification in x-rays using generative adversarial networks." IEEE international conference on acoustics, speech and signal processing (ICASSP), 2018.
- M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan "Gan-based synthetic medical image augmentation for increased cnn performance in liver lesion classification." Neurocomputing, vol. 321, pp. 321-331, 2018. https://doi.org/10.1016/j.neucom.2018.09.013
- D. Zhao, D. Zhu, J. Lu, Y. Luo, and G. Zhang, "Synthetic medical images using F&BGAN for improved lung nodules classification by multi-scale VGG16." Symmetry, vol. 10, no. 10, p. 519, 2018.
- P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, "Imageto-image translation with conditional adversarial networks." CVPR, 2017.
- Lee, H., Lee, H., Hong, H., Bae, H., Lim, J. S., and Kim, J, "Classification of focal liver lesions in CT images using convolutional neural networks with lesion information augmented patches and synthetic data augmentation." Medical physics 48.9, pp. 5029-5046, 2021. https://doi.org/10.1002/mp.15118
- Zhang, H., Cisse, M., Dauphin, Y. N. and Lopez-Paz, D. "mixup: Beyond empirical risk minimization." International Conference on Learning Representations(ICLR), 2017.
- Hendrycks, D., Mu, N., Cubuk, E. D., Zoph, B., Gilmer, J., and Lakshminarayanan, B. "AugMix: A simple data processing method to improve robustness and uncertainty" International Conference on Learning Representations(ICLR), 2019.
- Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo, Y, "Cutmix: Regularization strategy to train strong classifiers with localizable features." Proceedings of the IEEE/CVF international conference on computer vision, 2019.
- M. Nishio, S. Noguchi, H. Matsuo, and T. Murakami, "Automatic classification between COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy on chest X-ray image: combination of data augmentation methods." Scientific reports 10.1, pp. 1-6., 2020. https://doi.org/10.1038/s41598-019-56847-4
- Rajan, D., Thiagarajan, J. J., Karargyris, A. and Kashyap, S. "Self-training with improved regularization for sample-efficient chest x-ray classification." Medical Imaging 2021: Computer-Aided Diagnosis. SPIE, Volume 11597, 2021.
- Ozdemir, O. and Sonmez, E. B. "Attention mechanism and mixup data augmentation for classification of COVID-19 Computed Tomography images." Journal of King Saud University -Computer and Information Sciences, Volume 34, Issue 8, Part B, Pages 5587-6504, 2022. https://doi.org/10.1016/j.jksuci.2021.02.009
- van der Maaten L, and Hinton G, "Visualizing data using t-sne."Journal of machine learning research, vol 9, pp. 2579-2605, 2008.
- R. Hao, K. Namdar, L. Liu, M. A. Haider, and F. Khalvati, "A comprehensive study of data augmentation strategies for prostate cancer detection in diffusion-weighted MRI using convolutional neural networks." Journal of Digital Imaging, pp. 862-876, 2021.
- M. Kim and H.-J. Bae, "Data augmentation techniques for deep learning based medical image analyses." Journal of the Korean Society of Radiology, vol. 81, no. 6, 2020.
- H. Bae, H. Lee, S. Kim, K. Han, H. Rhee, D. Kim, H. Kwon, H. Hong, and J.S. Lim, "Radiomics Analysis of Contrast-Enhanced CT for Classification of Hepatic Focal Lesions in Colorectal Cancer Patients: Its Limitations Compared to Radiologists," European Radiology, 31, pp.8786-8796, 2021. https://doi.org/10.1007/s00330-021-07877-y