DOI QR코드

DOI QR Code

Numerical simulation on the coupled chemo-mechanical damage of underground concrete pipe

  • Xiang-nan Li (Department of Civil Engineering, Nanjing University of Science & Technology) ;
  • Xiao-bao Zuo (Department of Civil Engineering, Nanjing University of Science & Technology) ;
  • Yu-xiao Zou (Department of Civil Engineering, Nanjing University of Science & Technology) ;
  • Yu-juan Tang (School of Civil Engineering, Yangzhou Polytechnic College)
  • Received : 2021.04.25
  • Accepted : 2023.05.11
  • Published : 2023.06.25

Abstract

Long-termly used in water supply, an underground concrete pipe is easily subjected to the coupled action of pressure loading and flowing water, which can cause the chemo-mechanical damage of the pipe, resulting in its premature failure and lifetime reduction. Based on the leaching characteristics and damage mechanism of concrete pipe, this paper proposes a coupled chemo-mechanical damage and failure model of underground concrete pipe for water supply, including a calcium leaching model, mechanical damage equation and a failure criterion. By using the model, a numerical simulation is performed to analyze the failure process of underground concrete pipe, such as the time-varying calcium concentration in concrete, the thickness variation of pipe wall, the evolution of chemo-mechanical damage, the distribution of concrete stress on the pipe and the lifetime of the pipe. Results show that, the failure of the pipe is a coupled chemo-mechanical damage process companied with calcium leaching. During its damage and failure, the concentrations of calcium phase in concrete decrease obviously with the time, and it can cause an increase in the chemo-mechanical damage of the pipe, while the leaching and abrasion induced by flowing water can lead to the boundary movement and wall thickness reduction of the pipe, and it results in the stress redistribution on the pipe section, a premature failure and lifetime reduction of the pipe.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China (Nos. 52078252 and 51778297) and Natural Science Fund Project of Colleges in Jiangsu Province (No. 20KJB430030).

References

  1. Arjomandi, K. and Taheri, F. (2011), "Stability and post-buckling response of sandwich pipes under hydrostatic external pressure", Int. J. Press. Ves. Pip., 88(4), 138-148. https://doi.org/10.1016/j.ijpvp.2011.02.002.
  2. Bangert, F., Grasberger, S., Kuhl, D. and Meschke, G. (2003), "Environmentally induced deterioration of concrete: Physical motivation and numerical modeling", Eng. Fract. Mech., 70(7), 891-910. https://doi.org/10.1016/S0013-7944(02)00156-X.
  3. Bielski, A., Zielina, M. and Mlynska, A. (2020), "Analysis of heavy metals leaching from internal pipe cement coating into potable water", J. Clean. Prod., 265, 121425. https://doi.org/10.1016/j.jclepro.2020.121425.
  4. Carde, C. and Francois, R. (1999), "Modelling the loss of strength and porosity increase due to the leaching of cement pastes", Cement Concrete Compos., 21(3), 181-188. https://doi.org/10.1016/S0958-9465(98)00046-8.
  5. Cheng, B.Q., Dou, T.S., Xia, S.F., Zhao, L.J., Yang, J.X. and Zhang, Q. (2020), "Mechanical properties and loading response of prestressed concrete cylinder pipes under internal water pressure", Eng. Struct., 216, 110674. https://doi.org/10.1016/j.engstruct.2020.110674.
  6. Fang, H.Y., Yang, K.J., Du, X.M., Li, B., Zhang, X.J. and Tan, P.L. (2020), "Experimental study on the mechanical properties of corroded concrete pipes subjected to diametral compression", Constr. Build. Mater., 261, 120576. https://doi.org/10.1016/j.conbuildmat.2020.120576.
  7. Ge, S.Q. and Sinha, S. (2014), "Failure analysis, condition assessment technologies, and performance prediction of prestressed-concrete cylinder pipe: State-of-the-art literature review", J. Perform. Constr. Facil., 28(3), 618-628. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000424.
  8. Gerard, B., Bellego, C.L. and Bernard, O. (2002), "Simplified modelling of calcium leaching of concrete in various environments", Mater. Struct., 35(10), 632-640. https://doi.org/10.1007/BF02480356.
  9. Gil, L., Perez, M.A. and Bernat, E. (2011), "Loss of strength in asbestos-cement water pipes due to leaching", Struct. Eng. Mech., 40(5), 655-663. http://doi.org/10.12989/sem.2011.40.5.655.
  10. Grassl, P. and Jirasek, M. (2006), "Damage-plastic model for concrete failure", Int. J. Solid. Struct., 43(22-23), 7166-7196. https://doi.org/10.1016/j.ijsolstr.2006.06.032.
  11. Grassl, P. and Jirasek, M. (2010), "Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension", Int. J. Solid. Struct., 47(7-8), 957-968. https://doi.org/10.1016/j.ijsolstr.2009.12.010.
  12. Haga, K., Sutou, S., Hironaga, M., Tanaka, S. and Nagasaki, S. (2005), "Effects of porosity on leaching of Ca from hardened ordinary Portland cement paste", Cement Concrete Res., 35(9), 1764-1775. https://doi.org/10.1016/j.cemconres.2004.06.034.
  13. Hajali, M., Alavinasab, A. and Shdid, C.A. (2016), "Structural performance of buried prestressed concrete cylinder pipes with harnessed joints interaction using numerical modeling", Tunn. Undergr. Sp. Tech., 51, 11-19. https://doi.org/10.1016/j.tust.2015.10.016.
  14. Han, F.H., Liu, R.G. and Yan, P.Y. (2014), "Effect of fresh water leaching on the microstructure of hardened composite binder pastes", Constr. Build. Mater., 68, 630-636. https://doi.org/10.1016/j.conbuildmat.2014.07.019.
  15. Hassi, S., Touhami, M.E., Boujad, A. and Benqlilou, H. (2020), "Assessing the effect of mineral admixtures on the durability of prestressed concrete cylinder pipe (PCCP) by means of electrochemical impedance spectroscopy", Constr. Build. Mater., 262, 120925. https://doi.org/10.1016/j.conbuildmat.2020.120925.
  16. He, S.L., Zuo, X.B., Sun, X.H., Zou, S. and Tang, Y.J. (2020), "Leaching behavior of hardened cement paste with mineral admixtures in deionized water", J. Test. Eval., 48(1), 20180241. https://doi.org/10.1520/JTE20180241.
  17. Hu, B.Y., Fang, H.Y., Wang, F.M. and Zhai, K.J. (2019), "Full-scale test and numerical simulation study on load-carrying capacity of prestressed concrete cylinder pipe (PCCP) with broken wires under internal water pressure", Eng. Fail. Anal., 104, 513-530. https://doi.org/10.1016/j.engfailanal.2019.06.049.
  18. Hu, H.H., Zuo, X.B., Cui, D. and Tang, Y.J. (2019), "Experimental study on leaching-abrasion behavior of concrete in flowing solution with low velocity", Constr. Build. Mater., 224, 762-772. https://doi.org/10.1016/j.conbuildmat.2019.07.125.
  19. Jain, J. and Neithalath, N. (2009), "Analysis of calcium leaching behavior of plain and modified cement pastes in pure water", Cement Concrete Compos., 31(3), 176-185. https://doi.org/10.1016/j.cemconcomp.2009.01.003.
  20. Jia, Z.J., Cao, R.L., Chen, C. and Zhang, Y.M. (2019), "Using in-situ observation to understand the leaching behavior of Portland cement and alkali-activated slag pastes", Compos. Part B-Eng., 177, 107366. https://doi.org/10.1016/j.compositesb.2019.107366.
  21. Kuhl, D., Bangert, F. and Meschke, G. (2004), "Coupled chemo-mechanical deterioration of cementitious materials. Part I: Modeling", Int. J. Solid. Struct., 41(1) 15-40. https://doi.org/10.1016/j.ijsolstr.2003.08.005.
  22. Li, X.N., Zuo, X.B. and Zou, Y.X. (2021), "Modeling and simulation on coupled chloride and calcium diffusion in concrete", Constr. Build. Mater., 271, 121557. https://doi.org/10.1016/j.conbuildmat.2020.121557.
  23. Meguid, M.A. and Kamel, S. (2014), "A three-dimensional analysis of the effects of erosion voids on rigid pipes", Tunn. Undergr. Sp. Tech., 43, 276-289. https://doi.org/10.1016/j.tust.2014.05.019.
  24. Meschke, G., Lackner, R. and Mang, H.A. (1998), "An anisotropic elastoplastic-damage model for plain concrete", Int. J. Numer. Meth. Eng., 42(4), 703-727. https://doi.org/10.1002/(SICI)1097-0207(19980630)42:4<703::AID-NME384>3.0.CO;2-B.
  25. Nakarai, K., Ishida, T. and Maekawa, K. (2006), "Modeling of calcium leaching from cement hydrates coupled with micro-pore formation", J. Adv. Concr. Technol., 4(3), 395-407. https://doi.org/10.3151/jact.4.395.
  26. Nedjar, B. (2001), "Elastoplastic-damage modelling including the gradient of damage: Formulation and computational aspects", Int. J. Solid. Struct., 38(30), 5421-5451. https://doi.org/10.1016/S0020-7683(00)00358-9.
  27. Nguyen, V.H., Colina, H., Torrenti, J.M., Boulay, C. and Nedjar, B. (2007), "Chemo-mechanical coupling behaviour of leached concrete: Part I: Experimental results", Nucl. Eng. Des., 237(20-21), 2083-2089. https://doi.org/10.1016/j.nucengdes.2007.02.013.
  28. Nguyen, V.H., Nedjar, B. and Torrenti, J.M. (2007), "Chemo-mechanical coupling behaviour of leached concrete: Part II: Modelling", Nucl. Eng. Des., 237(20-21), 2090-2097. https://doi.org/10.1016/j.nucengdes.2007.02.012.
  29. Patel, R.A., Perko, J., Jacques, D., Schutter, G.D., Ye, G. and Breugel, K.V. (2018), "A three-dimensional lattice Boltzmann method based reactive transport model to simulate changes in cement paste microstructure due to calcium leaching", Constr. Build. Mater., 166, 158-170. https://doi.org/10.1016/j.conbuildmat.2018.01.114.
  30. Phung, Q.T., Maes, N., Jacques, D., Perko, J., Schutter, G.D. and Ye, G. (2016), "Modelling the evolution of microstructure and transport properties of cement pastes under conditions of accelerated leaching", Constr. Build. Mater., 115, 179-192. https://doi.org/10.1016/j.conbuildmat.2016.04.049.
  31. Pichler, C., Saxer, A. and Lackner, R. (2014), "Differential-scheme based dissolution/diffusion model for calcium leaching in cement-based materials accounting for mix design and binder composition", Cement Concrete Res., 42(5), 686-699. https://doi.org/10.1016/j.cemconres.2012.02.007.
  32. Rikabi, F.T.A., Sargand, S.M., Kurdziel, J. and Khoury, I. (2020), "Performance of thin-wall synthetic fiber-reinforced concrete pipes under short and long-term loading", J. Test. Eval., 48(5), 20180369. https://doi.org/10.1520/JTE20180369.
  33. Sato, M., Patel, M.H. and Trarieux, F. (2008), "Static displacement and elastic buckling characteristics of structural pipe-in-pipe cross-sections", Struct. Eng. Mech., 30(3), 263-278. http://doi.org/10.12989/sem.2008.30.3.263.
  34. Schiopu, N., Tiruta-Barna, L., Jayr, E., Mehu, J. and Moszkowicz, P. (2009), "Modelling and simulation of concrete leaching under outdoor exposure conditions", Sci. Total Environ., 407(5), 1613-1630. https://doi.org/10.1016/j.scitotenv.2008.11.027.
  35. Stora, E., Bary, B., He, Q.C., Deville, E. and Montarnal, P. (2010), "Modelling and simulations of the chemo-mechanical behaviour of leached cement-based materials: Interactions between damage and leaching", Cement Concrete Res., 40(8), 1226-1236. https://doi.org/10.1016/j.cemconres.2010.04.002.
  36. Sugiyama, T., Ritthichauy, W. and Tsuji, Y. (2008), "Experimental investigation and numerical modeling of chloride penetration and calcium dissolution in saturated concrete", Cement Concrete Res., 38(1), 49-67. https://doi.org/10.1016/j.cemconres.2007.08.027.
  37. Sulikowski, J. and Kozubal, J. (2016), "The durability of a concrete sewer pipeline under deterioration by sulphate and chloride corrosion", Procedia Eng., 153, 698-705. https://doi.org/10.1016/j.proeng.2016.08.229.
  38. Wan, K.S., Li, L. and Sun, W. (2013), "Solid-liquid equilibrium curve of calcium in 6 mol/L ammonium nitrate solution", Cement Concrete Res., 53, 44-50. https://doi.org/10.1016/j.cemconres.2013.06.003.
  39. Wan, K.S., Li, L., Xu, Q. and Sun, W. (2015), "Spatial distribution of the increased porosity of cement paste due to calcium leaching", J. Wuhan Univ. Technol.-Mat. Sci. Ed., 30(4), 735-744. https://doi.org/10.1007/s11595-015-1221-7.
  40. Wan, K.S., Li, Y. and Sun, W. (2013), "Experimental and modelling research of the accelerated calcium leaching of cement paste in ammonium nitrate solution", Constr. Build. Mater., 40, 832-846. https://doi.org/10.1016/j.conbuildmat.2012.11.066.
  41. Wells, T. and Melchers, R.E. (2015), "Modelling concrete deterioration in sewers using theory and field observations", Cement Concrete Res., 77, 82-96. https://doi.org/10.1016/j.cemconres.2015.07.003.
  42. Wu, J.Y., Li, J. and Faria, R. (2006), "An energy release rate-based plastic-damage model for concrete", Int. J. Solid. Struct., 43(3-4), 583-612. https://doi.org/10.1016/j.ijsolstr.2005.05.038.
  43. Zamanian, S., Hur, J. and Shafieezadeh, A. (2020), "A high-fidelity computational investigation of buried concrete sewer pipes exposed to truckloads and corrosion deterioration", Eng. Struct., 221, 111043. https://doi.org/10.1016/j.engstruct.2020.111043.
  44. Zhang, X.Y., Wu, H.J., Li, J.Z., Pi, A.G. and Huang, F.L. (2020), "A constitutive model of concrete based on Ottosen yield criterion", Int. J. Solid. Struct., 193-194, 79-89. https://doi.org/10.1016/j.ijsolstr.2020.02.013.
  45. Zuo, X.B., Sun, W., Li, H. and Zhao, Y.K. (2012), "Modeling of diffusion-reaction behavior of sulfate ion in concrete under sulfate environments", Comput. Concrete, 10(1), 79-93. http://dx.doi.org/10.12989/cac.2012.10.1.079.