DOI QR코드

DOI QR Code

Free vibration and buckling analyses of curved plate frames using finite element method

  • Oguzhan Das (Department of Aeronautics Sciences, Air NCO Higher Vocational School, National Defence University) ;
  • Hasan Ozturk (Department of Mechanical Engineering, Dokuz Eylul University, Tinaztepe Campus) ;
  • Can Gonenli (Department of Machine Drawing and Construction, Ege University)
  • Received : 2020.06.28
  • Accepted : 2023.05.11
  • Published : 2023.06.25

Abstract

This study investigates the free vibration and buckling analyses of isotropic curved plate structures fixed at all ends. The Kirchhoff-Love Plate Theory (KLPT) and Finite Element Method (FEM) are employed to model the curved structure. In order to perform the finite element analysis, a four-node quadrilateral element with 5 degrees of freedom (DOF) at each node is utilized. Additionally, the drilling effect (θz) is considered as minimal to satisfy the DOF of the structure. Lagrange's equation of motion is used in order to obtain the first ten natural frequencies and the critical buckling values of the structure. The effects of various radii of curvatures and aspect ratio on the natural frequency and critical buckling load values for the single-bay and two-bay curved frames are investigated within this scope. A computer code based on finite element analysis is developed to perform free vibration and buckling analysis of curved plate frames. The natural frequency and critical buckling load values of the present study are compared with ANSYS R18.2 results. It has been concluded that the results of the present study are in good agreement with ANSYS results for different radii of curvatures and aspect ratio values of both single-bay and two-bay structures.

Keywords

References

  1. Abdallah, Z., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26(2), 125-137. https://doi.org/10.12989/scs.2018.26.2.125.
  2. Abrate, S. (2017), "Impact on composite plates in contact with water", Dyn. Resp. Fail. Compos. Mater. Struct., 183-216. https://doi.org/10.1016/B978-0-08-100887-4.00006-8.
  3. Adim, B., Daouadji, T.H. and Abbes, B. (2016), "Buckling analysis of anti-symmetric cross-ply laminated composite plates under different boundary conditions", Int. Appl. Mech., 17, 661-676. https://doi.org/10.1007/s10778-016-0787-x.
  4. Adim, B., Daouadji, T.H., Abbes, B. and Rabahi, A. (2016), "Buckling and free vibration analysis of laminated composite plates using an efficient and simple higher order shear deformation theory", Mech. Indus., 17(5), 512. https://doi.org/10.1051/meca/2015112.
  5. Adim, B., Daouadji, T.H., Rabahi, A., Amine, B.M., Zidour, M. and Abbes, B. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761.
  6. Barbero, E.J., Madeo, A., Zagari, G., Zinno, R. and Zucco, G. (2014), "A mixed isostatic 24 dof element for static and buckling analysis of laminated folded plates", Compos. Struct., 116, 223-234. https://doi.org/10.1016/j.compstruct.2014.05.003.
  7. Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., 21(6), 1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287.
  8. Burlayenko, V.N. and Sadowski, T. (2019), "Free vibrations and static analysis of functionally graded sandwich plates with three-dimensional finite elements", Meccanica, 55, 815-832. https://doi.org/10.1007/s11012-019-01001-7.
  9. Castaldo, P., Gino, D., Bertagnoli, G. and Mancini, G. (2020), "Resistance model uncertainty in non-linear finite element analyses of cyclically loaded reinforced concrete systems", Eng. Struct., 211, 110496. https://doi.org/10.1016/j.engstruct.2020.110496.
  10. Gino, D., Bertagnoli, G., La Mazza, D. and Mancini, G. (2017), "A quantification of model uncertainties in NLFEA of R.C. shear walls subjected to repeated loading", Ingegneria Sismica, 34(3-4), 79-91.
  11. Haldar, S. and Sheikh, A. (2005), "Free vibration analysis of isotropic and composite folded plates using a shear flexible element", Finite Elem. Anal. Des., 42(3), 208-226. https://doi.org/10.1016/j.finel.2005.06.003.
  12. Huynh, T.A., Luu, A.T. and Lee, J. (2017), "Bending, buckling and free vibration analyses of functionally graded curved beams with variable curvatures using isogeometric approach", Meccanica, 52(11-12), 2527-2546. https://doi.org/10.1007/s11012-016-0603-z.
  13. Joshi, P.V., Gupta, A., Jain, N.K., Salhotra, R., Rawani, A.M. and Rametkkar, G.D. (2017), "Effect of thermal environment on free vibration and buckling of partially cracked isotropic and FGM micro plates based on a non classical Kirchhoff's plate theory: An analytical approach", Int. J. Mech. Sci., 131-132, 155-170. https://doi.org/10.1016/j.ijmecsci.2017.06.044.
  14. Klouche, F., Darcherif, L., Sekkal, M., Tounsi, A. and Mahmoud, S.R. (2017), "An original single variable shear deformation theory for buckling analysis of thick isotropic plates", Struct. Eng. Mech., 63(4), 439-446. https://doi.org/10.12989/sem.2017.63.4.439.
  15. Lai, S.K. and Zhang, L.H. (2018), "Thermal effect on vibration and buckling analysis of thin isotropic/orthotropic rectangular plates with crack defects", Eng. Struct., 52, 1017-1033. https://doi.org/10.1007/s11012-016-0426-y.
  16. Liu, C., Liu, B. and Xing, Y. (2017), "In-plane vibration analysis of plates in curvilinear domains by a differential quadrature hierarchical finite element method", Meccanica, 52, 1017-1033. https://doi.org/10.1007/s11012-016-0426-y.
  17. Mahmoud, S.R. and Tounsi, A. (2019), "On the stability of isotropic and composite thick plates", Steel Compos. Struct., 33(4), 551-568. https://doi.org/10.12989/scs.2019.33.4.551.
  18. Manna, M.C. (2005), "Free vibration analysis of isotropic rectangular plates using a high-order triangular finite element with shear", J. Sound Vib., 281(1-2), 235-259. https://doi.org/10.1016/j.jsv.2004.01.015.
  19. Nejati, M., Asanjarani, A., Dimitri, R. and Tornabene, F. (2017), "Static and free vibration analysis of functionally graded conical shells reinforced by carbon nanotubes", Int. J. Mech. Sci., 281, 383-398. https://doi.org/10.1016/j.ijmecsci.2017.06.024.
  20. Nguyen-Minh, N., Nguyen-Thoi, T., Bui-Xuan, T. and Vo-Duy, T. (2015), "Static and free vibration analyses of stiffened folded plates using a cell-based smoothed discrete shear gap method (CS-FEM-DSG3)", Appl. Math. Comput., 266, 212-234. https://doi.org/10.1016/j.amc.2015.05.042.
  21. Ozdemir, M., Sadamoto, S., Tanaka, S., Okazawa, S., Yu, T.T. and Bui, T.Q. (2018), "Application of 6-DOFs meshfree modeling to linear buckling analysis of stiffened plates with curvilinear surfaces", Acta Mechanica, 229(12), 4995-5012. https://doi.org/10.1007/s00707-018-2275-3.
  22. Ozturk, H. (2011), "In-plane free vibration of a pre-stressed curved beam obtained from a large deflected cantilever beam", Finite Elem. Anal. Des., 47(3), 229-236. https://doi.org/10.1016/j.finel.2010.10.003.
  23. Peng, L.X., Kitipornchai, S. and Liew, K.M. (2006), "Free vibration analysis of folded plate structures by the FSDT mesh-free method", Comput. Mech., 39(6), 799-814. https://doi.org/10.1007/s00466-006-0070-9.
  24. Petyt, M. (2015), Introduction to Finite Element Vibration Analysis, Cambridge.
  25. Van Binh, B. and Hien, L.T. (2020), "Buckling analysis of folded composite plate subjected to in-plane loading condition", Adv. Mater., 6, 109-121. https://doi.org/10.1007/978-3-030-45120-2_10.
  26. Xiang, S., Kang, G.W. and Xing, B. (2012), "A nth-order shear deformation theory for the free vibration analysis on the isotropic plates", Meccanica, 47(8), 1913-1921. https://doi.org/10.1007/s11012-012-9563-0.
  27. Zhu, X., Wang, Y. and Dai, H.H. (2017), "Buckling analysis of Euler-Bernoulli beams using Eringen's two-phase nonlocal model", Int. J. Eng. Sci., 116, 130-140. https://doi.org/10.1016/j.ijengsci.2017.03.008.