과제정보
The authors acknowledge the financial support from the National Natural Science Foundation of China (No. 52172356).
참고문헌
- Al-Furjan, M.S.H., Fan, S., Shan, L., Farrokhian, A., Shen, X. and Kolahchi, R. (2023), "Wave propagation analysis of micro air vehicle wings with honeycomb core covered by porous FGM and nanocomposite magnetostrictive layers", Wave. Random Complex, 1-30. https://doi.org/10.1080/17455030.2022.2164378.
- Al-Furjan, M.S.H., Farrokhian A., Mahmoud, S.R. and Kolahchi, R. (2021), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", Thin Wall. Struct., 163, 107706. https://doi.org/10.1016/j.tws.2021.107706.
- Al-Furjan, M.S.H., Shan, L., Shen, X., Kolahchi, R. and Rajak, D.K. (2022), "Combination of FEM-DQM for nonlinear mechanics of porous GPL-reinforced sandwich nanoplates based on various theories", Thin Wall. Struct., 178, 109495. https://doi.org/10.1016/j.tws.2022.109495.
- Al-Furjan, M.S.H., Xu, M.X., Farrokhian, A., Jafari, G.S., Shen, X. and Kolahchi, R. (2022), "On wave propagation in piezoelectric-auxetic honeycomb-2d-fgm micro-sandwich beams based on modified couple stress and refined zigzag theories", Wave. Random Complex, 1-25. https://doi.org/10.1080/17455030.2022.2030499.
- Al-Furjan, M.S.H., Yin, C., Shen, X., Kolahchi, R., Zarei, M.S. and Hajmohammad, M.H. (2022), "Energy absorption and vibration of smart auxetic FG porous curved conical panels resting on the frictional viscoelastic torsional substrate", Mech. Syst. Signal Pr., 178, 109269. https://doi.org/10.1016/j.ymssp.2022.109269.
- Ali, A., Youzera, H., Abualnour, M., Houari, M., Meftah, S.A. and Tounsi, A. (2021), "Superharmonic vibrations of sandwich beams with fibre composite core layer based on the multiple scale method", Struct. Eng. Mech., 80, 201-210. https://doi.org/10.12989/sem.2021.80.2.201.
- Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81, 705-714. https://doi.org/10.12989/sem.2022.81.6.705.
- Arani, A.G., Sabzeali, M. and Zarei, H.B. (2017), "Nonlinear vibration of double-walled boron nitride and carbon nanopeapods under multi-physical fields with consideration of surface stress effects", Eur. Phys. J. Plus., 132, 1-14. https://doi.org/10.1140/epjp/i2017-11800-6.
- Askarian, A.R., Abtahi, H., Firouz-Abadi, R.D., Haddadpour, H. and Dowell, E.H. (2018), "Bending-torsional instability of a viscoelastic cantilevered pipe conveying pulsating fluid with an inclined terminal nozzle", J. Mech. Sci. Technol., 32, 2999-3008. https://doi.org/10.1007/s12206-018-0603-0.
- Atabakhshian, V. and Shooshtari, A. (2020), "Pulsating flow induced parametric instabilities of a smart embedded micro-shell based on nonlocal piezoelasticity theory", Sci. Iran., 27, 730-744. https://doi.org/10.24200/SCI.2018.50293.1627.
- Bahaadini, R., Dashtbayazi, M.R., Hosseini, M. and Khalili-Parizi, Z. (2018), "Stability analysis of composite thin-walled pipes conveying fluid", Ocean. Eng. 160, 311-323. https://doi.org/10.1016/j.oceaneng.2018.04.061.
- Bai, Y., Xie, W., Gao, X. and Xu, W. (2018), "Dynamic analysis of a cantilevered pipe conveying fluid with density variation", J. Fluid. Struct., 81, 638-655. https://doi.org/10.1016/j.jfluidstructs.2018.06.005.
- Bidgoli, M.R., Karimi, M.S. and Arani, A.G. (2015), "Nonlinear vibration and instability analysis of functionally graded CNT-reinforced cylindrical shells conveying viscous fluid resting on orthotropic Pasternak medium", Mech. Adv. Mater. Struct., 23, 819-831. https://doi.org/10.1080/15376494.2015.1029170.
- Bolotin, V.V. (1965), "The dynamic stability of elastic systems", Am. J. Phys., 33, 752-753. https://doi.org/10.1115/1.3627306.
- Cho, J.R. (2022), "Thermal buckling analysis of metal-ceramic functionally graded plates by natural element method", Struct. Eng. Mech., 84, 723-731. https://doi.org/10.12989/sem.2022.84.6.723.
- Chu, C., Al-Furjan, M.S.H., Kolahchi, R. and Farrokhian, A. (2023), "A nonlinear Chebyshev-based collocation technique to frequency analysis of thermally pre/post-buckled third-order circular sandwich plates", Commun. Nonlin. Sci., 118, 107056. https://doi.org/10.1016/j.cnsns.2022.107056.
- Fang, W.Z., Viola, F., Camarri, S., Yang, C. and Zhu, L. (2021), "A low-Reynolds-number actuator driven by instability: rotating or oscillating", Nonlin. Dyn., 106, 2005-2019. https://doi.org/10.1007/s11071-021-06846-w.
- Farrokhian, A. (2020), "Buckling response of smart plates reinforced by nanoparticles utilizing analytical method", Steel. Compos. Struct., 35, 1-12. https://doi.org/10.12989/scs.2020.35.1.001.
- Farrokhian, A. and Salmani-Tehrani, M. (2020), "Surface and small scale effects on the dynamic buckling of carbon nanotubes with smart layers assuming structural damping", Steel. Compos. Struct., 37, 229-251. https://doi.org/10.12989/scs.2020.37.2.229.
- Ghadiri, M. and Hosseini, S.H.S. (2019), "Parametric excitation of Euler-Bernoulli nanobeams under thermos-smagneto-mechanical loads: Nonlinear vibration and dynamic instability", Compos. Part B-Eng., 173, 106928. https://doi.org/10.1016/j.compositesb.2019.106928.
- Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by sio2 nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
- Gupta, A. and Talha, M. (2015), "Recent development in modeling and analysis of functionally graded materials and structures", Prog. Aerosp. 79, 1-14. https://doi.org/10.1016/j.paerosci.2015.07.001.
- Hajmohammad, M.H., Azizkhani, M.B. and Kolahchi, R. (2018), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", Int. J. Mech. Sci., 137, 205-213. https://doi.org/10.1016/j.ijmecsci.2018.01.026.
- Hu, K., Wang, Y.K., Dai, H.L., Wang, L. and Qian, Q. (2016), "Nonlinear and chaotic vibrations of cantilevered micropipes conveying fluid based on modified couple stress theory", Int. J. Eng. Sci., 105, 93-107. https://doi.org/10.1016/j.ijengsci.2016.04.014.
- Hu, X., Jin, Q.D. and Fu, X.W. (2022), "Parametric resonance of shear deformable nanotubes: A novel higher-order model incorporating nonlinearity from both curvature and inertia", Eur. J. Mech. A-Solid., 96, 104693. https://doi.org/10.1016/j.euromechsol.2022.104693.
- Huang, J.L. and Zhu, W.D. (2017), "A new incremental harmonic balance method with two time scales for quasi-periodic motions of an axially moving beam with internal resonance under single-tone external excitation", J. Vib. Acoust., 139(2), 021010. https://doi.org/10.1115/1.4035135.
- Ibrahim, R.A. (2010), "Overview of mechanics of pipes conveying fluids-Part I: Fundamental studies", J. Press. Ves. Technol., 132, 632-635. https://doi.org/10.1115/1.4001271.
- Jin, Q. and Ren, Y. (2022), "Nonlinear size-dependent bending and forced vibration of internal flow-inducing pre- and post-buckled FG nanotubes", Commun. Nonlin. Sci., 104, 106044. https://doi.org/10.1016/j.cnsns.2021.106044.
- Jin, Q. and Ren, Y. (2022), "Nonlinear size-dependent dynamic instability and local bifurcation of FG nanotubes transporting oscillatory fluids", Acta Mech Solid Sin., 38. https://doi.org/10.1007/s10409-021-09075-x.
- Jin, Q., Ren, Y., Jiang, H. and Li, L. (2021), "A higher-order size-dependent beam model for nonlinear mechanics of fluid-conveying FG nanotubes incorporating surface energy", Compos. Struct., 269, 114022. https://doi.org/10.1016/j.compstruct.2021.114022.
- Jin, Q.D. and Ren, Y.R. (2022), "Dynamic instability mechanism of post-buckled FG nanotubes transporting pulsatile flow: size-dependence and local/global dynamics", Appl. Math. Model., 111, 139-159. https://doi.org/10.1016/j.apm.2022.06.025.
- Karlicic, D., Cajic, M. and Adhikari, S. (2018), "Dynamic stability of a nonlinear multiple-nanobeam system", Nonlin. Dyn., 93, 1495-1517. https://doi.org/10.1007/s11071-018-4273-3.
- Khodabakhsh, R., Saidi, A.R. and Bahaadini, R. (2020), "An analytical solution for nonlinear vibration and post-buckling of functionally graded pipes conveying fluid considering the rotary inertia and shear deformation effects", Appl. Ocean. Res., 101, 102277. https://doi.org/10.1016/j.apor.2020.102277.
- Kolahchi, R. and Kolahdouzan, F. (2021), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Math. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.
- Kolahchi, R., Keshtegar, B. and Trung, N.T. (2022), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", J. Sandw. Struct. Mater., 24, 643-662. https://doi.org/10.1177/10996362211020388.
- Lacarbonara, W. (2013), Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling, Springer Publishing Company, Springer, Rome, Italy.
- Lee, S.I. and Chung, J. (2022), "New non-linear modeling for vibration analysis of a straight pipe conveying fluid", J. Sound. Vib., 254, 313-325. https://doi.org/10.1006/jsvi.2001.4097.
- Liu, T. and Li, Z.M. (2021), "Nonlinear vibration analysis of functionally graded material tubes with conveying fluid resting on elastic foundation by a new tubular beam model", Int. J. Nonlin. Mech., 137, 103824. https://doi.org/10.1016/j.ijnonlinmec.2021.103824.
- Matsuzaki, Y. and Fung, Y.C. (1979), "Nonlinear stability analysis of a two-dimensional model of an elastic tube conveying a compressible flow", J. Appl. Mech., 46, 31-36. https://doi.org/10.1115/1.3424524.
- Mohammad, H.H., Farrokhian, A. and Kolahchi, R. (2021), "Dynamic analysis in beam element of wave-piercing Catamarans undergoing slamming load based on mathematical modelling", Ocean Eng., 234, 109269. https://doi.org/10.1016/j.oceaneng.2021.109269.
- Motezaker, M., Kolahchi, R., Rajak, D.K. and Mahmoud, S.R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., 42, 4073-4081. https://doi.org/10.1002/pc.26118.
- Naserian-Nik, A.M. and Tahani, M. (2010), "Free vibration analysis of moderately thick rectangular laminated composite plates with arbitrary boundary conditions", Struct. Eng. Mech., 35(2), 217-240. https://doi.org/10.12989/sem.2010.35.2.217.
- PaiDoussis, M.P. and Issid, N.T. (1974), "Dynamic stability of pipes conveying fluid", J. Sound. Vib., 33, 267-294. https://doi.org/10.1016/S0022-460X(74)80002-7.
- Paidoussis, M.P. and Sundararajan, C. (1975), "Parametric and combination resonances of a pipe conveying pulsating fluid", J. Appl. Mech., 42, 780-784. https://doi.org/10.1115/1.3423705.
- Pierre, C. and Dowell, E.H. (1985), "A study of dynamic instability of plates by an extended incremental harmonic balance method", J. Appl. Mech-T. ASME., 52, 693-697. https://doi.org/10.1115/1.3169123.
- Reddy, R.S., Panda, S. and Gupta, A. (2020), "Nonlinear dynamics of an inclined FG pipe conveying pulsatile hot fluid", Int. J. Nonlin. Mech., 118, 103276. https://doi.org/10.1016/j.ijnonlinmec.2019.103276.
- Ren, Y., Li, L., Jin, Q., Nie, L. and Peng, F. (2021), "Vibration and snapthrough of fluid-conveying graphene-reinforced composite pipes under low-velocity impact", AIAA J., 59(12), 5091-5105. https://doi.org/10.2514/1.J060628.
- Rizzetto, F., Jansen, E., Strozzi, M. and Pellicano, F. (2019), "Nonlinear dynamic stability of cylindrical shells under pulsating axial loading via Finite Element analysis using numerical time integration", Thin. Wall. Struct., 143, 106213. https://doi.org/10.1016/j.tws.2019.106213.
- Sadeghi, M.H. and Karimi-Dona, M.H. (2011), "Dynamic behavior of a fluid conveying pipe subjected to a moving sprung mass-An FEM-state space approach", Int. J. Pres. Ves. Pip., 88, 123-131. https://doi.org/10.1016/j.ijpvp.2011.02.004.
- Sahoo, P.K. and Chatterjee, S. (2021), "High-frequency vibrational control of principal parametric resonance of a nonlinear cantilever beam: Theory and experiment", J. Sound. Vib., 505, 116138. https://doi.org/10.1016/j.jsv.2021.116138.
- Salmani, R., Gholami, R., Ansari, R. and Fakhraie, M. (2021), "Analytical investigation on the nonlinear postbuckling of functionally graded porous cylindrical shells reinforced with graphene nanoplatelets", Eur. Phys. J. Plus, 136, 1-19. https://doi.org/10.1140/epjp/s13360-020-01009-z.
- Sayyad, A.S. and Ghugal, Y.M. (2018), "Modeling and analysis of functionally graded sandwich beams: A review", Mech. Adv. Mater. Struct., 26, 1776-1795. https://doi.org/10.1080/15376494.2018.1447178.
- Shahmohammadi, M.A., Azhari, M., Saadatpour, M.M., Salehipour, H. and Civalek, O . (2021), "Dynamic instability analysis of general shells reinforced with polymeric matrix and carbon fibers using a coupled IG-SFSM formulation", Compos. Struct., 263, 113720. https://doi.org/10.1016/j.compstruct.2021.113720.
- Shen, H.S. (2013), A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells, Wiley, Singapore.
- Tan, X. and Ding, H. (2020), "Parametric resonances of Timoshenko pipes conveying pulsating high-speed fluids", J. Sound. Vib., 485, 115594. https://doi.org/10.1016/j.jsv.2020.115594.
- Tang, Y. and Yang, T. (2018), "Post-buckling behavior and nonlinear vibration analysis of a fluid-conveying pipe composed of functionally graded material", Compos. Struct., 185, 393-400. https://doi.org/10.1016/j.compstruct.2017.11.032.
- Wan, P.H., Al-Furjan, M.S.H., Kolahchi, R. and Shan, L. (2023), "Application of DQHFEM for free and forced vibration, energy absorption, and post-buckling analysis of a hybrid nanocomposite viscoelastic rhombic plate assuming CNTs' waviness and agglomeration", Mech. Syst. Signal. Pr., 189, 110064. https://doi.org/10.1016/j.ymssp.2022.110064.
- Wang, G.X., Ding, H. and Chen, L.Q. (2020), "Dynamic effect of internal resonance caused by gravity on the nonlinear vibration of vertical cantilever beams", J. Sound. Vib., 474, 115265. https://doi.org/10.1016/j.jsv.2020.115265.
- Yang, X.D., Yang, T.Z. and Jin, J.D. (2007), "Dynamic stability of a beam-model viscoelastic pipe for conveying pulsative fluid", Acta Mechanica Solida Sinica, 20, 350-356. https://doi.org/10.1007/s10338-007-0741-x.
- Zhang, P. and Fu, Y. (2013), "A higher-order beam model f or tubes", Eur. J. Mech. A-Solid., 38, 12-19. https://doi.org/10.1016/j.euromechsol.2012.09.009.
- Zhu, G., Fang, W.Z. and Zhu, L. (2022), "Optimizing low-Reynolds-number predation via optimal control and reinforcement learning", J. Fluid. Mech., 944, A3. https://doi.org/10.1017/jfm.2022.476.