DOI QR코드

DOI QR Code

Effect of boundary mobility on nonlinear pulsatile-flow induced dynamic instability of FG pipes

  • Zhoumi Wang (School of Aeronautics Science and Engineering, Beihang University) ;
  • Yiru Ren (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University) ;
  • Qingchun Meng (School of Aeronautics Science and Engineering, Beihang University)
  • 투고 : 2023.04.07
  • 심사 : 2023.05.10
  • 발행 : 2023.06.25

초록

In practical engineering such as aerial refueling pipes, the boundary of the fluid-conveying pipe is difficult to be completely immovable. Pipes under movable and immovable boundaries are controlled by different dominant nonlinear factors, where the boundary mobility will affect the nonlinear dynamic characteristics, which should be focused on for adopting different strategies for vibration suppression and control. The nonlinear dynamic instability characteristics of functionally graded fluid-conveying pipes lying on a viscoelastic foundation under movable and immovable boundary conditions are systematically studied for the first time. Nonlinear factors involving nonlinear inertia and nonlinear curvature for pipes with a movable boundary as well as tensile hardening and nonlinear curvature for pipes with an immovable boundary are comprehensively considered during the derivation of the governing equations of the principal parametric resonance. The stability boundary and amplitude-frequency bifurcation diagrams are obtained by employing the two-step perturbation- incremental harmonic balance method (TSP-IHBM). Results show that the movability of the boundary of the pipe has a great influence on the vibration amplitude, bifurcation topology, and the physical meanings of the stability boundary due to different dominant nonlinear factors. This research has guidance significance for nonlinear dynamic design of fluid-conveying pipe with avoiding in the instability regions.

키워드

과제정보

The authors acknowledge the financial support from the National Natural Science Foundation of China (No. 52172356).

참고문헌

  1. Al-Furjan, M.S.H., Fan, S., Shan, L., Farrokhian, A., Shen, X. and Kolahchi, R. (2023), "Wave propagation analysis of micro air vehicle wings with honeycomb core covered by porous FGM and nanocomposite magnetostrictive layers", Wave. Random Complex, 1-30. https://doi.org/10.1080/17455030.2022.2164378. 
  2. Al-Furjan, M.S.H., Farrokhian A., Mahmoud, S.R. and Kolahchi, R. (2021), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", Thin Wall. Struct., 163, 107706. https://doi.org/10.1016/j.tws.2021.107706. 
  3. Al-Furjan, M.S.H., Shan, L., Shen, X., Kolahchi, R. and Rajak, D.K. (2022), "Combination of FEM-DQM for nonlinear mechanics of porous GPL-reinforced sandwich nanoplates based on various theories", Thin Wall. Struct., 178, 109495. https://doi.org/10.1016/j.tws.2022.109495. 
  4. Al-Furjan, M.S.H., Xu, M.X., Farrokhian, A., Jafari, G.S., Shen, X. and Kolahchi, R. (2022), "On wave propagation in piezoelectric-auxetic honeycomb-2d-fgm micro-sandwich beams based on modified couple stress and refined zigzag theories", Wave. Random Complex, 1-25. https://doi.org/10.1080/17455030.2022.2030499. 
  5. Al-Furjan, M.S.H., Yin, C., Shen, X., Kolahchi, R., Zarei, M.S. and Hajmohammad, M.H. (2022), "Energy absorption and vibration of smart auxetic FG porous curved conical panels resting on the frictional viscoelastic torsional substrate", Mech. Syst. Signal Pr., 178, 109269. https://doi.org/10.1016/j.ymssp.2022.109269. 
  6. Ali, A., Youzera, H., Abualnour, M., Houari, M., Meftah, S.A. and Tounsi, A. (2021), "Superharmonic vibrations of sandwich beams with fibre composite core layer based on the multiple scale method", Struct. Eng. Mech., 80, 201-210. https://doi.org/10.12989/sem.2021.80.2.201. 
  7. Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81, 705-714. https://doi.org/10.12989/sem.2022.81.6.705. 
  8. Arani, A.G., Sabzeali, M. and Zarei, H.B. (2017), "Nonlinear vibration of double-walled boron nitride and carbon nanopeapods under multi-physical fields with consideration of surface stress effects", Eur. Phys. J. Plus., 132, 1-14. https://doi.org/10.1140/epjp/i2017-11800-6. 
  9. Askarian, A.R., Abtahi, H., Firouz-Abadi, R.D., Haddadpour, H. and Dowell, E.H. (2018), "Bending-torsional instability of a viscoelastic cantilevered pipe conveying pulsating fluid with an inclined terminal nozzle", J. Mech. Sci. Technol., 32, 2999-3008. https://doi.org/10.1007/s12206-018-0603-0. 
  10. Atabakhshian, V. and Shooshtari, A. (2020), "Pulsating flow induced parametric instabilities of a smart embedded micro-shell based on nonlocal piezoelasticity theory", Sci. Iran., 27, 730-744. https://doi.org/10.24200/SCI.2018.50293.1627. 
  11. Bahaadini, R., Dashtbayazi, M.R., Hosseini, M. and Khalili-Parizi, Z. (2018), "Stability analysis of composite thin-walled pipes conveying fluid", Ocean. Eng. 160, 311-323. https://doi.org/10.1016/j.oceaneng.2018.04.061. 
  12. Bai, Y., Xie, W., Gao, X. and Xu, W. (2018), "Dynamic analysis of a cantilevered pipe conveying fluid with density variation", J. Fluid. Struct., 81, 638-655. https://doi.org/10.1016/j.jfluidstructs.2018.06.005. 
  13. Bidgoli, M.R., Karimi, M.S. and Arani, A.G. (2015), "Nonlinear vibration and instability analysis of functionally graded CNT-reinforced cylindrical shells conveying viscous fluid resting on orthotropic Pasternak medium", Mech. Adv. Mater. Struct., 23, 819-831. https://doi.org/10.1080/15376494.2015.1029170. 
  14. Bolotin, V.V. (1965), "The dynamic stability of elastic systems", Am. J. Phys., 33, 752-753. https://doi.org/10.1115/1.3627306. 
  15. Cho, J.R. (2022), "Thermal buckling analysis of metal-ceramic functionally graded plates by natural element method", Struct. Eng. Mech., 84, 723-731. https://doi.org/10.12989/sem.2022.84.6.723. 
  16. Chu, C., Al-Furjan, M.S.H., Kolahchi, R. and Farrokhian, A. (2023), "A nonlinear Chebyshev-based collocation technique to frequency analysis of thermally pre/post-buckled third-order circular sandwich plates", Commun. Nonlin. Sci., 118, 107056. https://doi.org/10.1016/j.cnsns.2022.107056. 
  17. Fang, W.Z., Viola, F., Camarri, S., Yang, C. and Zhu, L. (2021), "A low-Reynolds-number actuator driven by instability: rotating or oscillating", Nonlin. Dyn., 106, 2005-2019. https://doi.org/10.1007/s11071-021-06846-w. 
  18. Farrokhian, A. (2020), "Buckling response of smart plates reinforced by nanoparticles utilizing analytical method", Steel. Compos. Struct., 35, 1-12. https://doi.org/10.12989/scs.2020.35.1.001. 
  19. Farrokhian, A. and Salmani-Tehrani, M. (2020), "Surface and small scale effects on the dynamic buckling of carbon nanotubes with smart layers assuming structural damping", Steel. Compos. Struct., 37, 229-251. https://doi.org/10.12989/scs.2020.37.2.229. 
  20. Ghadiri, M. and Hosseini, S.H.S. (2019), "Parametric excitation of Euler-Bernoulli nanobeams under thermos-smagneto-mechanical loads: Nonlinear vibration and dynamic instability", Compos. Part B-Eng., 173, 106928. https://doi.org/10.1016/j.compositesb.2019.106928. 
  21. Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by sio2 nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431. 
  22. Gupta, A. and Talha, M. (2015), "Recent development in modeling and analysis of functionally graded materials and structures", Prog. Aerosp. 79, 1-14. https://doi.org/10.1016/j.paerosci.2015.07.001. 
  23. Hajmohammad, M.H., Azizkhani, M.B. and Kolahchi, R. (2018), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", Int. J. Mech. Sci., 137, 205-213. https://doi.org/10.1016/j.ijmecsci.2018.01.026. 
  24. Hu, K., Wang, Y.K., Dai, H.L., Wang, L. and Qian, Q. (2016), "Nonlinear and chaotic vibrations of cantilevered micropipes conveying fluid based on modified couple stress theory", Int. J. Eng. Sci., 105, 93-107. https://doi.org/10.1016/j.ijengsci.2016.04.014. 
  25. Hu, X., Jin, Q.D. and Fu, X.W. (2022), "Parametric resonance of shear deformable nanotubes: A novel higher-order model incorporating nonlinearity from both curvature and inertia", Eur. J. Mech. A-Solid., 96, 104693. https://doi.org/10.1016/j.euromechsol.2022.104693. 
  26. Huang, J.L. and Zhu, W.D. (2017), "A new incremental harmonic balance method with two time scales for quasi-periodic motions of an axially moving beam with internal resonance under single-tone external excitation", J. Vib. Acoust., 139(2), 021010. https://doi.org/10.1115/1.4035135. 
  27. Ibrahim, R.A. (2010), "Overview of mechanics of pipes conveying fluids-Part I: Fundamental studies", J. Press. Ves. Technol., 132, 632-635. https://doi.org/10.1115/1.4001271. 
  28. Jin, Q. and Ren, Y. (2022), "Nonlinear size-dependent bending and forced vibration of internal flow-inducing pre- and post-buckled FG nanotubes", Commun. Nonlin. Sci., 104, 106044. https://doi.org/10.1016/j.cnsns.2021.106044. 
  29. Jin, Q. and Ren, Y. (2022), "Nonlinear size-dependent dynamic instability and local bifurcation of FG nanotubes transporting oscillatory fluids", Acta Mech Solid Sin., 38. https://doi.org/10.1007/s10409-021-09075-x. 
  30. Jin, Q., Ren, Y., Jiang, H. and Li, L. (2021), "A higher-order size-dependent beam model for nonlinear mechanics of fluid-conveying FG nanotubes incorporating surface energy", Compos. Struct., 269, 114022. https://doi.org/10.1016/j.compstruct.2021.114022. 
  31. Jin, Q.D. and Ren, Y.R. (2022), "Dynamic instability mechanism of post-buckled FG nanotubes transporting pulsatile flow: size-dependence and local/global dynamics", Appl. Math. Model., 111, 139-159. https://doi.org/10.1016/j.apm.2022.06.025. 
  32. Karlicic, D., Cajic, M. and Adhikari, S. (2018), "Dynamic stability of a nonlinear multiple-nanobeam system", Nonlin. Dyn., 93, 1495-1517. https://doi.org/10.1007/s11071-018-4273-3. 
  33. Khodabakhsh, R., Saidi, A.R. and Bahaadini, R. (2020), "An analytical solution for nonlinear vibration and post-buckling of functionally graded pipes conveying fluid considering the rotary inertia and shear deformation effects", Appl. Ocean. Res., 101, 102277. https://doi.org/10.1016/j.apor.2020.102277. 
  34. Kolahchi, R. and Kolahdouzan, F. (2021), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Math. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060. 
  35. Kolahchi, R., Keshtegar, B. and Trung, N.T. (2022), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", J. Sandw. Struct. Mater., 24, 643-662. https://doi.org/10.1177/10996362211020388. 
  36. Lacarbonara, W. (2013), Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling, Springer Publishing Company, Springer, Rome, Italy. 
  37. Lee, S.I. and Chung, J. (2022), "New non-linear modeling for vibration analysis of a straight pipe conveying fluid", J. Sound. Vib., 254, 313-325. https://doi.org/10.1006/jsvi.2001.4097. 
  38. Liu, T. and Li, Z.M. (2021), "Nonlinear vibration analysis of functionally graded material tubes with conveying fluid resting on elastic foundation by a new tubular beam model", Int. J. Nonlin. Mech., 137, 103824. https://doi.org/10.1016/j.ijnonlinmec.2021.103824. 
  39. Matsuzaki, Y. and Fung, Y.C. (1979), "Nonlinear stability analysis of a two-dimensional model of an elastic tube conveying a compressible flow", J. Appl. Mech., 46, 31-36. https://doi.org/10.1115/1.3424524. 
  40. Mohammad, H.H., Farrokhian, A. and Kolahchi, R. (2021), "Dynamic analysis in beam element of wave-piercing Catamarans undergoing slamming load based on mathematical modelling", Ocean Eng., 234, 109269. https://doi.org/10.1016/j.oceaneng.2021.109269. 
  41. Motezaker, M., Kolahchi, R., Rajak, D.K. and Mahmoud, S.R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., 42, 4073-4081. https://doi.org/10.1002/pc.26118. 
  42. Naserian-Nik, A.M. and Tahani, M. (2010), "Free vibration analysis of moderately thick rectangular laminated composite plates with arbitrary boundary conditions", Struct. Eng. Mech., 35(2), 217-240. https://doi.org/10.12989/sem.2010.35.2.217. 
  43. PaiDoussis, M.P. and Issid, N.T. (1974), "Dynamic stability of pipes conveying fluid", J. Sound. Vib., 33, 267-294. https://doi.org/10.1016/S0022-460X(74)80002-7. 
  44. Paidoussis, M.P. and Sundararajan, C. (1975), "Parametric and combination resonances of a pipe conveying pulsating fluid", J. Appl. Mech., 42, 780-784. https://doi.org/10.1115/1.3423705. 
  45. Pierre, C. and Dowell, E.H. (1985), "A study of dynamic instability of plates by an extended incremental harmonic balance method", J. Appl. Mech-T. ASME., 52, 693-697. https://doi.org/10.1115/1.3169123. 
  46. Reddy, R.S., Panda, S. and Gupta, A. (2020), "Nonlinear dynamics of an inclined FG pipe conveying pulsatile hot fluid", Int. J. Nonlin. Mech., 118, 103276. https://doi.org/10.1016/j.ijnonlinmec.2019.103276. 
  47. Ren, Y., Li, L., Jin, Q., Nie, L. and Peng, F. (2021), "Vibration and snapthrough of fluid-conveying graphene-reinforced composite pipes under low-velocity impact", AIAA J., 59(12), 5091-5105. https://doi.org/10.2514/1.J060628. 
  48. Rizzetto, F., Jansen, E., Strozzi, M. and Pellicano, F. (2019), "Nonlinear dynamic stability of cylindrical shells under pulsating axial loading via Finite Element analysis using numerical time integration", Thin. Wall. Struct., 143, 106213. https://doi.org/10.1016/j.tws.2019.106213. 
  49. Sadeghi, M.H. and Karimi-Dona, M.H. (2011), "Dynamic behavior of a fluid conveying pipe subjected to a moving sprung mass-An FEM-state space approach", Int. J. Pres. Ves. Pip., 88, 123-131. https://doi.org/10.1016/j.ijpvp.2011.02.004. 
  50. Sahoo, P.K. and Chatterjee, S. (2021), "High-frequency vibrational control of principal parametric resonance of a nonlinear cantilever beam: Theory and experiment", J. Sound. Vib., 505, 116138. https://doi.org/10.1016/j.jsv.2021.116138.
  51. Salmani, R., Gholami, R., Ansari, R. and Fakhraie, M. (2021), "Analytical investigation on the nonlinear postbuckling of functionally graded porous cylindrical shells reinforced with graphene nanoplatelets", Eur. Phys. J. Plus, 136, 1-19. https://doi.org/10.1140/epjp/s13360-020-01009-z. 
  52. Sayyad, A.S. and Ghugal, Y.M. (2018), "Modeling and analysis of functionally graded sandwich beams: A review", Mech. Adv. Mater. Struct., 26, 1776-1795. https://doi.org/10.1080/15376494.2018.1447178. 
  53. Shahmohammadi, M.A., Azhari, M., Saadatpour, M.M., Salehipour, H. and Civalek, O . (2021), "Dynamic instability analysis of general shells reinforced with polymeric matrix and carbon fibers using a coupled IG-SFSM formulation", Compos. Struct., 263, 113720. https://doi.org/10.1016/j.compstruct.2021.113720. 
  54. Shen, H.S. (2013), A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells, Wiley, Singapore. 
  55. Tan, X. and Ding, H. (2020), "Parametric resonances of Timoshenko pipes conveying pulsating high-speed fluids", J. Sound. Vib., 485, 115594. https://doi.org/10.1016/j.jsv.2020.115594. 
  56. Tang, Y. and Yang, T. (2018), "Post-buckling behavior and nonlinear vibration analysis of a fluid-conveying pipe composed of functionally graded material", Compos. Struct., 185, 393-400. https://doi.org/10.1016/j.compstruct.2017.11.032. 
  57. Wan, P.H., Al-Furjan, M.S.H., Kolahchi, R. and Shan, L. (2023), "Application of DQHFEM for free and forced vibration, energy absorption, and post-buckling analysis of a hybrid nanocomposite viscoelastic rhombic plate assuming CNTs' waviness and agglomeration", Mech. Syst. Signal. Pr., 189, 110064. https://doi.org/10.1016/j.ymssp.2022.110064. 
  58. Wang, G.X., Ding, H. and Chen, L.Q. (2020), "Dynamic effect of internal resonance caused by gravity on the nonlinear vibration of vertical cantilever beams", J. Sound. Vib., 474, 115265. https://doi.org/10.1016/j.jsv.2020.115265. 
  59. Yang, X.D., Yang, T.Z. and Jin, J.D. (2007), "Dynamic stability of a beam-model viscoelastic pipe for conveying pulsative fluid", Acta Mechanica Solida Sinica, 20, 350-356. https://doi.org/10.1007/s10338-007-0741-x. 
  60. Zhang, P. and Fu, Y. (2013), "A higher-order beam model f or tubes", Eur. J. Mech. A-Solid., 38, 12-19. https://doi.org/10.1016/j.euromechsol.2012.09.009. 
  61. Zhu, G., Fang, W.Z. and Zhu, L. (2022), "Optimizing low-Reynolds-number predation via optimal control and reinforcement learning", J. Fluid. Mech., 944, A3. https://doi.org/10.1017/jfm.2022.476.