DOI QR코드

DOI QR Code

Two-level control system of toggle braces having pipe damper and rotational friction damper

  • Ata Abdollahpour (School of Civil Engineering, College of Engineering, University of Tehran) ;
  • Seyed Mehdi Zahrai (School of Civil Engineering, College of Engineering, University of Tehran)
  • Received : 2021.12.25
  • Accepted : 2023.05.08
  • Published : 2023.06.25

Abstract

This study examines the two-level behavior of the toggle brace damper within a steel frame having a yielding pipe damper and rotational friction damper. The proposed system has two kinds of fuse for energy dissipation in two stages. In this mechanism, rotational friction damper rather than hinged connection is used in toggle brace system, connected to a pipe damper with a limited gap. In order to create a gap, bolted connection with the slotted hole is used, such that first a specific movement of the rotational friction damper solely is engaged but with an increase in movement, the yielding damper is also involved. The performance of the system is such that at the beginning of loading the rotational friction damper, as the first fuse, absorbs energy and with increasing the input load and further movement of the frame, yielding damper as the second fuse, along with rotational friction damper would dissipate the input energy. The models created by ABAQUS are subjected to cyclic and seismic loading. Considering the results obtained, the flexibility of the hybrid two-level system is more comparable to the conventional toggle brace damper. Moreover, this system sustains longer lateral displacements. The energy dissipation of these two systems is modeled in multi-story frames in SAP2000 software and their performance is analyzed using time-history analysis. According to the results, permanent relocations of the roof in the two-level system, in comparison with toggle brace damper system in 2, 5, and 8-story building frames, in average, decrease by 15, 55, and 37% respectively. This amount in a 5-story building frame under the earthquakes with one-third scale decreases by 64%.

Keywords

References

  1. Ahmadi, H.R., Namdari, N., Cao, M. and Bayat, M. (2019), "Seismic investigation of pushover methods for concrete piers of curved bridges in plan", Comput. Concrete, 23, 1-10. https://doi.org/10.12989/cac.2019.23.1.001.
  2. Andalib, Z., Kafi, M., Kheyroddin, A. and Bazzaz, M. (2014), "Experimental investigation of the ductility and performance of steel rings constructed from plates", J. Constr. Steel Res., 103, 77-88. https://doi.org/10.1016/j.jcsr.2014.07.016.
  3. Balendra, T., Yu, C. and Lee, F. (2001), "An economical structural system for wind and earthquake loads", Eng. Struct., 23(5), 491-501. https://doi.org/10.1016/S0141-0296(00)00061-4.
  4. Cavallaro, G., Francavilla, A.B., Latour, M., Piluso, V. and Rizzano, G. (2018), "Cyclic response of low yielding connections using different friction materials", Soil Dyn. Earthq. Eng., 114, 404-423. https://doi.org/10.1016/j.soildyn.2018.07.041.
  5. Cheraghi, A. and Zahrai, S.M. (2019), "Cyclic testing of multilevel pipe in pipe damper", J. Earthq. Eng., 23(10), 1695-1718. https://doi.org/10.1080/13632469.2017.1387191.
  6. Ghorbani, H.R. and Rofooei, F.R. (2020), "A novel double slip loads friction damper to control the seismic response of structures", Eng. Struct., 225(9), 111273. https://doi.org/10.1016/j.engstruct.2020.111273.
  7. Hwang, J.S., Huang, Y.N. and Hung, Y.H. (2005), "Analytical and experimental study of toggle-brace-damper systems analytical and experimental study of toggle-brace-damper systems", J. Struct. Eng., 131, 1035-1043. https://doi.org/10.1061/(ASCE)0733-9445(2005)131.
  8. Hwang, J.S., Tsai, C. and Wang, S. (2006), "Experimental study of RC building structures with supplemental viscous dampers and lightly reinforced walls", Struct. Eng., 28, 1816-1824. https://doi.org/10.1016/j.engstruct.2006.03.012.
  9. Khoshkroodi, A. and Sani, H. (2019), "Evaluation of friction-slit hybrid dampers in moment-resisting steel frames", Int. J. Adv. Sci. Res. Eng., 5, 122-133. https://doi.org/10.31695/ijasre.2019.33204.
  10. Kim, J. and Shin, H. (2017), "Seismic loss assessment of a structure retrofitted with slit-friction hybrid dampers", Eng. Struct., 130, 336-350. https://doi.org/10.1016/j.engstruct.2016.10.052.
  11. Lee, C.H., Kim, J., Kim, D.H., Ryu, J. and Ju, Y.K. (2016). Numerical and experimental analysis of combined behavior of shear-type friction damper and non-uniform strip damper for multi-level seismic protection", Eng. Struct., 114, 75-92. https://doi.org/10.1016/j.engstruct.2016.02.007.
  12. Lee, J., Kang, H. and Kim, J. (2017), "Seismic performance of steel plate slit-friction hybrid dampers", J. Constr. Steel Res., 136, 128-139. https://doi.org/10.1016/j.jcsr.2017.05.005.
  13. Maiorana, E., Zampieri, P. and Pellegrino, C. (2018), "Experimental tests on slip factor in friction joints: comparison between European and American Standards", Frattura Ed Integrita Strutturale, 12(43), 205-217. https://doi.org/10.3221/IGF-ESIS.43.16.
  14. Mirfakhraei, S.F., Ahmadi, H.R. and Chan, R. (2020), "Numerical and experimental research on actuator forces in toggled active vibration control system (Part I: Numerical)", Smart Struct. Syst., 25(2), 229. https://doi.org/10.12989/sss.2020.25.2.229.
  15. Mirfakhraei, S.F., Ahmadi, H.R. and Chan, R. (2021), "Numerical and experimental research on actuator forces in toggled active vibration control system (Part II: Experimental)", Smart Struct. Syst., 28(5), 631. https://doi.org/10.12989/sss.2021.28.5.631.
  16. Mostoufi-Afshar, P. and Zahrai, S.M. (2020), "Seismic retrofit of steel buildings using external resistant RC walls and friction dampers", Struct. Eng. Mech., 76(6), 823. https://doi.org/10.12989/sem.2020.76.6.823.
  17. Muallaa, I.H. and Belev, B. (2002), "Performance of steel frames with a new friction damper device under earthquake excitation", Eng. Struct., 24(3), 365-371. https://doi.org/10.1016/S0141-0296(01)00102-X.
  18. Pall, A. and Marsh, C. (1982), "Response of friction damped braced frames", J. Struct. Eng., 108, 1313-1323. https://doi.org/10.1061/JSDEAG.0005968.
  19. Ranaei, O. and Aghakouchak, A.A. (2019), "A new hybrid energy dissipation system with viscoelastic and flexural yielding strips dampers for multi-level vibration control", Arch. Civil Mech., 19, 584-597. https://doi.org/10.1016/j.acme.2018.12.005.
  20. Rousta, A.M. and Zahrai, S.M. (2017), "Cyclic testing of innovative two-level control system: Knee brace & vertical link in series in chevron braced steel frames", Struct. Eng. Mech., 64(3), 301. https://doi.org/10.12989/sem.2017.64.3.301.
  21. Sam-Daliri, P., Zahrai, S.M. and Dahaghin, H. (2021), "Towards optimal slip force and stiffness distribution in designing friction dampers", Struct. Eng. Mech., 79(3), 289. https://doi.org/10.12989/sem.2021.79.3.289.
  22. Shahiditabar, A. and Moharrami, H. (2021), "Development and experimental verification of self-centered y-shaped braced frame", Struct., 34, 1312-1325. https://doi.org/10.1016/j.istruc.2021.08.046.
  23. Shen, S., Pan, P., Sun, J., Gong, R., Wang, H. and Li, W. (2017), "Development of a double-sliding friction damper (DSFD)", Smart Struct. Syst., 20(2), 151. https://doi.org/10.12989/sss.2017.20.2.151.
  24. Shi, Y., Zhong, Z., Qin, H., Han, J. and Sun, Z. (2020), "Toggle buckling-restrained brace systems and a corresponding design method for the seismic retrofit of bridge bents", Eng. Struct., 221(7), 110996. https://doi.org/10.1016/j.engstruct.2020.110996.
  25. Taylor, D.P. (1999), Toggle Linkage Seismic Isolation Structure, Patent No. 5870863.
  26. Vosooq, A.K. and Zahrai, S.M. (2013), "Study of an innovative two-stage control system: Chevron knee bracing & shear panel in series connection", Struct. Eng. Mech., 47(6), 881-898. https://doi.org/10.12989/sem.2013.47.6.881.
  27. Zahrai, S.M. (2015), "Cyclic testing of chevron braced steel frames with IPE shear panels", Steel Compos. Struct., 19(5), 1167-1184. https://doi.org/10.12989/scs.2015.19.5.1167.
  28. Zahrai, S.M. and Cheraghi, A. (2017a), "Improving cyclic behavior of multi-level pipe damper using infill or slit diaphragm inside inner pipe", Struct. Eng. Mech., 64, 195-204. https://doi.org/10.12989/sem.2017.64.2.195.
  29. Zahrai, S.M. and Cheraghi, A. (2017b), "Reducing seismic vibrations of typical steel buildings using new multi-level yielding pipe damper", Int. J. Steel Struct., 17(3), 983-998. https://doi.org/10.1007/s13296-017-9010-0.
  30. Zare Golmoghany, M. and Zahrai, S.M. (2021a), "Improving seismic behavior using a hybrid control system of friction damper and vertical shear panel in series", Struct., 31, 369-379. https://doi.org/10.1016/j.istruc.2021.02.007.
  31. Zare Golmoghany, M. and Zahrai, S.M. (2021b), "Seismic behavior of a two-level control system with double vertical shear links in series", Smart Struct. Syst., 27(3), 467-478. https://doi.org/10.12989/sss.2021.27.3.467.