DOI QR코드

DOI QR Code

Nonlocal strain gradient theory for bending analysis of 2D functionally graded nanobeams

  • Aicha Bessaim (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Mohammed Sid Ahmed Houari (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Smain Bezzina (Mechanical. Engineering Department, King Abdulaziz University) ;
  • Ali Merdji (Department of Mechanical Engineering, Faculty of Science and Technology, University of Mascara) ;
  • Ahmed Amine Daikh (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Mohamed-Ouejdi Belarbi (Laboratoire de Recherche en Genie Civil, LRGC, Universite de Biskra) ;
  • Abdelouahed Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
  • 투고 : 2022.12.21
  • 심사 : 2023.04.03
  • 발행 : 2023.06.25

초록

This article presents an analytical approach to explore the bending behaviour of of two-dimensional (2D) functionally graded (FG) nanobeams based on a two-variable higher-order shear deformation theory and nonlocal strain gradient theory. The kinematic relations are proposed according to novel trigonometric functions. The material gradation and material properties are varied along the longitudinal and the transversal directions. The equilibrium equations are obtained by using the virtual work principle and solved by applying Navier's technique. A comparative evaluation of results against predictions from literature demonstrates the accuracy of the proposed analytical model. Moreover, a detailed parametric analysis checks for the sensitivity of the bending and stresses response of (2D) FG nanobeams to nonlocal length scale, strain gradient microstructure scale, material distribution and geometry.

키워드

과제정보

This research work was funded by Institutional Fund Projects under grand no. (IFPIP: 845-305-1443). The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

참고문헌

  1. Aifantis, E.C. (1992), "On the role of gradients in the localization of deformation and fracture", Int. J. Eng. Sci., 30(10), 1279-1299. https://doi.org/10.1016/0020-7225(92)90141-3
  2. Alazwari, M.A., Daikh, A.A., Houari, M.S.A., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel Compos. Struct., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389.
  3. Alazwari, M.A., Daikh, A.A., Houari, M.S.A., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel Compos. Struct., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389.
  4. Bensaid, I. and Daikh, A.A. (2020), "Size-dependent free vibration and buckling analysis of sigmoid and power law functionally graded sandwich nanobeams with microstructural defects", Proc. I. Mech. E. Part C: J. Mech. Eng. Sci., 234(18), 3667-3688. https://doi.org/10.1177/0954406220916481.
  5. Daikh A.A, Drai, A., Houari, M.S.A. and Eltaher M.A. (2020), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643.
  6. Eltaher, M.A. and Akbas, S.D. (2020), "Transient response of 2D functionally graded beam structure", Struct. Eng. Mech., 75(3), 357-367. https://doi.org/10.12989/sen.2020.75.3.357.
  7. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.
  8. Esen, I. (2020), "Dynamics of size-dependant Timoshenko micro beams subjected to moving loads", Int. J. Mech. Sci., 175, 105501. https://doi.org/10.1016/j.ijmecsci.2020.105501.
  9. Esen, I. and Ozmen, R. (2022b), "Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity", Compos. Struct., 296, 115878. https://doi.org/10.1016/j.compstruct.2022.115878.
  10. Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2021b), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-021-01389-5.
  11. Esen, I., Alazwari, M.A., Eltaher, M.A. and Abdelrahman, A.A. (2022a), "Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load", Steel Compos. Struct., 42(6), 805-826. https://doi.org/10.12989/scs.2022.42.6.805.
  12. Esen, I., Eltaher, M.A. and Abdelrahman, A.A. (2021c), "Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Bas. Des. Struct. Mach., 51(5), 2607-2631. https://doi.org/10.1080/15397734.2021.1904255.
  13. Esen, I., O zarpa, C. and Eltaher, M.A. (2021a), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552.
  14. Finot, M., Suresh. S., Bull, C. and Sampath. S. (1996), "Curvature changes during thermal cycling of a compositionally graded Ni/A12O3 multi-layered material", Mater. Sci. Eng. A-Struct., 205, 59-71. https://doi.org/10.1016/0921-5093(95)09892-5
  15. Hendi, A.A., Eltaher, A.A., Mohamed, S.A., Attia, M.A. and Abdalla, A.W. (2021), "Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory", Steel Compos. Struct., 41(6), 787-803. https://doi.org/10.12989/scs.2021.41.6.787.
  16. Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
  17. Karamanli, A. (2017), "Bending behaviour of two directional functionally graded sandwich beams by using a quasi-3d shear deformation theory", Compos Struct., 174, 70-86. https://doi.org/10.1016/j.compstruct.2017.04.046.
  18. Lei, J., He, Y., Li, Z., Guo, S. and Liu, D. (2019), "Postbuckling analysis of bi-directional functionally graded imperfect beams based on a novel third-order shear deformation theory", Compos Struct., 209, 811-829. https://doi.org/10.1016/j.compstruct.2018.10.106.
  19. Lim, C.W., Zhang, G. and Redd, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solid., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  20. Melaibari, A., Daikh, A.A., Basha, M., Abdalla, A.W., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022), "A dynamic analysis of randomly oriented functionally graded carbon nanotubes/fiber-reinforced composite laminated shells with different geometries", Math., 10, 408. https://doi.org/10.3390/math10030408.
  21. Melaibari, A., Daikh, A.A., Basha, M., Abdalla, A.W., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022), "Free vibration of FG-CNTRCs nano-plates/shells with temperature-dependent properties", Math., 10, 583. https://doi.org/10.3390/math10040583.
  22. Miyamoto,Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (1999), Functionally Graded Materials: Design, Processing and Applications, Kluwer Academic, Boston.
  23. Nejad, M.Z. and Hadi. A. (2016b), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nanobeams", Int. J. Eng. Sci., 105, 1-11. https://doi.org/10.1016/j.ijengsci.2016.04.011.
  24. Nejad, M.Z. and Hadi. A. (2016c), "Eringen's non-local elasticity theory for bending analysis of bidirectional functionally graded Euler-Bernoulli nanobeams", Int. J. Eng. Sci., 106, 313-319. https://doi.org/10.1016/j.ijengsci.2016.05.005
  25. Nejad, M.Z., Hadi, A. and Rastgoo, A. (2016a), "Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nanobeams based on nonlocal elasticity theory", Int. J. Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001.
  26. Nguyen, D.K., Nguyen, Q.H., Tran, T.T. and Bui, V.T. (2017), "Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load", Acta Mechanica, 228(1), 141-155. https://doi.org/10.1007/s00707-016-1705-3.
  27. Ozmen, R., Kilic, R. and Esen, I. (2022), "Thermomechanical vibration and buckling response of nonlocal strain gradient porous FG nanobeams subjected to magnetic and thermal fields", Mech. Adv. Mater. Struct., 1-20. https://doi.org/10.1080/15376494.2022.2124000.
  28. Pydah, A. and Batra, R.C. (2017), "Shear deformation theory using logarithmic function for thick circular beams and analytical solution for bi-directional functionally graded circular beams", Compos. Struct., 172, 45-60. https://doi.org/10.1016/j.compstruct.2017.03.072.
  29. Rajasekaran, S. and Khaniki, H.B. (2018), "Free vibration analysis of bi-directional functionally graded single/multi-cracked beams", Int. J. Eng. Sci., 144, 341-356. https://doi.org/10.1016/j.ijmecsci.2018.06.004.
  30. Shafiei, N., Mirjavadi, S.S., Mohasel Afshari, B., Rabby, S. and Kazemi, M. (2017), "Vibration of twodimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Meth. Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.
  31. Simsek, M. (2015), "Bi-directional functionally graded materials (2D FGMs) for free and forced vibration of Timoshenko beams with various boundary conditions", Compos. Struct., 133, 968-978. https://doi.org/10.1016/j.compstruct.2015.08.021.
  32. Tang, Y., Li, C.L. and Yang, T. (2023a), "Application of the generalized differential quadrature method to study vibration and dynamic stability of tri-directional functionally graded beam under magneto-electro-elastic fields", Eng. Anal. Bound. Elem., 146, 808-823. https://doi.org/10.1016/j.compstruct.2021.113746.
  33. Tang, Y., Lv, X.F. and Yang, T.Z. (2019), "Bi-directional functionally graded beams: asymmetric modes and nonlinear free vibration", Compos Part B-Eng., 156, 319-331. https://doi.org/10.1016/j.compositesb.2018.08.140.
  34. Tang, Y., Ma, Z.S., Ding, Q. and Wang, T. (2021b), "Dynamic interaction between bi-directional functionally graded materials and magneto-electro-elastic fields: A nano-structure analysis", Compos. Struct., 264, 113746. https://doi.org/10.1016/j.compstruct.2021.113746
  35. Tang, Y., Wang, G., Yang, T. and Ding, Q. (2023b), "Nonlinear dynamics of three-directional functional graded pipes conveying fluid with the integration of piezoelectric attachment and nonlinear energy sink", Nonlin. Dyn., 111(3), 2415-2442. https://doi.org/10.1007/s11071-022-07971-w.
  36. Tang, Y., Wang, T., Ma, Z.S. and Yang, T. (2021a), "Magneto-electro-elastic modelling and nonlinear vibration analysis of bi-directional functionally graded beams", Nonlin. Dyn., 105, 2195-2227. https://doi.org/10.1007/s11071-021-06656-0.
  37. Thang, P.T., Nguyen-Thoi, T. and Lee, L. (2021), "Modeling and analysis of bi-directional functionally graded nanobeams based on nonlocal strain gradient theory", Appl. Math. Comput., 407, 126303. https://doi.org/10.1016/j.amc.2021.126303.
  38. Truong, T.T., Nguyen-Thoi, T. and Lee, J. (2019), "Isogeometric size optimization of bi-directional functionally graded beams under static loads", Compos. Struct., 227, 111259. https://doi.org/10.1016/j.compstruct.2019.111259.
  39. Yang, T., Tang, Y., Li, Q. and Yang, X.D. (2018), "Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams", Compos. Struct., 204, 313-319. https://doi.org/10.1016/j.compstruct.2018.07.045.
  40. Zhen, Y., Gong, Y. and Tang, Y. (2021), "Nonlinear vibration analysis of a supercritical fluid-conveying pipe made of functionally graded material with initial curvature", Compos. Struct., 268, 113980. https://doi.org/10.1016/j.compstruct.2021.113980.