DOI QR코드

DOI QR Code

Acoustic Fatigue Life Prediction of Aircraft External Storage Skin Structures with Mean Stress Effect Based on Response Surface Methodology

반응면 기법을 활용한 평균 응력이 적용된 항공기 외장 구조물 외피의 음향 피로 수명 예측

  • Yeon-Ju Kim (Department of Aerospace Engineering Chungnam National University) ;
  • Min-Hyeok Jeon (Department of Aerospace Engineering Chungnam National University) ;
  • Hyun-Jun Cho (Department of Aerospace Engineering Chungnam National University) ;
  • Mi-Yeon Lee (Department of Aerospace Engineering Chungnam National University) ;
  • In-Gul Kim (Department of Aerospace Engineering Chungnam National University) ;
  • Hansol Lee (Mechanical Design Team, Hanwha Systems Co., Ltd.)
  • 김연주 (충남대학교 항공우주공학과) ;
  • 전민혁 (충남대학교 항공우주공학과) ;
  • 조현준 (충남대학교 항공우주공학과) ;
  • 이미연 (충남대학교 항공우주공학과) ;
  • 김인걸 (충남대학교 항공우주공학과) ;
  • 이한솔 (한화시스템 기계설계팀)
  • Received : 2023.02.01
  • Accepted : 2023.04.26
  • Published : 2023.06.30

Abstract

The skin thickness of the external storage skin structure should be determined to satisfy fatigue life considering acoustic load and mean stress caused by the static load during flight. The fatigue life prediction process for each thickness must be repeated in the design phase, and the design cost/period would increase. In this study, the acoustic fatigue life in the frequency domain was predicted according to the skin thickness and mean stress. The predicted result was used to generate a response surface in terms of thickness and mean stress distribution. The response surface for fatigue life, which is a function of the mean stress and skin thickness variables, was made. The response surface for the predicted fatigue life according to mean stress and skin thickness can reduce the design cost/period, and is expected to be used for optimal structural design.

항공기 외장 구조물의 외피는 운용 중 발생하는 소음에 의한 음향 하중과 정적 하중 등으로 발생한 평균 응력에 대한 피로 손상을 고려하여 두께를 결정해야 한다. 그러나 주어진 하중 조건 하에서 최적의 두께를 결정하기 위해서는 각각의 두께에 대한 피로 수명 예측 과정을 반복해야 하고 이는 설계 비용과 시간의 증가로 이어진다. 본 연구에서는 평균 응력을 고려하여 주파수 영역에서의 두께에 따른 음향 피로 수명을 예측하였다. 예측된 피로 수명 결과를 이용하여 두께와 평균 응력 크기에 따른 반응면을 생성하였다. 평균 응력과 두께를 변수로 하는 피로 수명 예측 반응면은 설계 비용/기간을 줄일 수 있으며 최적 구조 설계에도 활용될 수 있다. 평균 응력이 적용된 구조물의 주파수 응답 함수 변화를 고려한 음향 피로 수명은 평균 응력을 단순하게 피로 파손식에만 적용한 피로수명보다 짧게 예측되었다.

Keywords

Acknowledgement

본 논문은 2021년도 한화시스템(주)의 재원을 지원 받아 수행되었습니다.

References

  1. R. D. Blevins, "An Approximate Method for Sonic Fatigue Analysis of Plates and Shells," Journal of Sound and Vibration, vol. 129, no. 1, pp. 51-71, Feb. 1989. https://doi.org/10.1016/0022-460X(89)90535-X
  2. E. S. Go, M. G. Kim, and M. S. Kim, "Fatigue Life Prediction in Frequency Domain Using Thermal-acoustic Loading Test Results of Titanium Specimen," Journal of Mechanical Science and Technology, vol. 34, no. 10, pp. 4015-4024, 2020.
  3. E. S. Go, M. G. Kim, Y. S. Moon, M. S. Kim, J. S. Park, and M. S. Kim, "Experimental Study on Dynamic Behavior of a Titanium Specimen Using the Thermal-Acoustic Fatigue Apparatus," Journal of Korea Society for Aeronautical and Space Sciences, vol. 48, no. 2, pp. 127-134, 2020. https://doi.org/10.5139/JKSAS.2020.48.2.127
  4. A. Nieslony and M. Bohm, "Mean stress effect correction in frequency-domain methods for fatigue life assessment," Procedia Engineering, vol. 101, pp. 347-354, 2015. https://doi.org/10.1016/j.proeng.2015.02.042
  5. M. Mrsnik, J. Slavic, and M. Boltezar, "Frequency-domain Methods for a Vibration-fatigue-life Estimation Application to Real - Data," International Journal of Fatigue, vol. 47, pp. 8-17, 2013. https://doi.org/10.1016/j.ijfatigue.2012.07.005
  6. MIL-STD-810G, Environmental Engineering Considerations and Laboratory Tests, US Department of Defense, 2008.
  7. O. C. Jun and S. Kim, "Design of Instrumented Pod for Flight Aeroacoustic Environment," Journal of Korea Society for Aeronautical and Space Sciences, vol. 40, no. 6, pp. 536-541, 2012. https://doi.org/10.5139/JKSAS.2012.40.6.536
  8. H. S. Jung, K. S. Kim, J. S. Kim, and S. W. Lee, "Fatigue Life Evaluation in Frequency Domain of Aircraft Equipment Exposed to Random Vibration," Journal of Korea Society for Aeronautical and Space Sciences, vol. 45, no. 8, pp. 627-638, 2017. https://doi.org/10.5139/JKSAS.2017.45.8.627
  9. J. M. Cho, J. Jang, W. C. Choi, and J. I. Bae, "Fatigue Life Prediction of Sensor Pod for Aircraft Considering Aircraft Loads," Journal of Aerospace System Engineering, vol. 13, no. 3, pp. 32-39, 2019.
  10. A. Nieslony and M. Bohm, "Frequency-Domain Fatigue Life Estimation with Mean Stress Correction," International Journal of Fatigue, vol. 91, pp. 373-381, 2016. https://doi.org/10.1016/j.ijfatigue.2016.02.031
  11. T. Dirlik, Application of Computers in Fatigue Analysis, Ph.D. Thesis, University of Warwick, 1985.
  12. R. D. Blevins, Formulas for Dynamics, Acoustics and Vibration, Wiley, 442-428, 2015.
  13. E. S. Go, I. G. Kim, H. J. Jeon, J. A. Park, and M. S. Kim, "Generation of Time Series Data from Octave Bandwidth SPL of Acoustic Loading Using Interpolation Method," Journal of the Korean Institude of Military Science and Technology, vol. 24, no. 1, pp. 1-11, 2021. https://doi.org/10.9766/KIMST.2021.24.1.001
  14. J. Goodman, Mechanics Applied to Engineering, Longmans, Green, 1919.
  15. Metallic material properties development and standardization(MMPDS), MMPDS-01, Federal Aviation Administration, 2003.
  16. A. Palmgren, "Die lebensdauer von kugellagern," VDI-Zeitschrift, vol. 68, no. 14, pp.339-341, 1924.
  17. M. A. Miner, "Cumulative damage in fatigue," Journal of applied mechanic, vol. 67, pp.159-164, 1945. https://doi.org/10.1115/1.4009458
  18. V. Adams and A. Askenazi, Building Better Products with Finite Element Analysis, OnWord Press, 1999.