DOI QR코드

DOI QR Code

Conceptual Design of Variable Length Landing Gear using Ultrasonic Sensor

초음파 센서를 이용한 길이 가변 랜딩기어 개념설계

  • Jieun Choi (University of Ulsan, Dept. Aerospace Engineering) ;
  • Baeseong Kim (University of Ulsan, Dept. Aerospace Engineering) ;
  • Juho Lee (University of Ulsan, Dept. Aerospace Engineering)
  • 최지은 (울산대학교 항공우주공학전공) ;
  • 김배성 (울산대학교 항공우주공학전공) ;
  • 이주호 (울산대학교 항공우주공학전공)
  • Received : 2022.12.26
  • Accepted : 2023.05.04
  • Published : 2023.06.30

Abstract

Recently, the number of aircraft requiring vertical take-off and landing is increasing, and take-off and landing at places other than flat ground is also needed. However, in the case of fixed landing gear, it is difficult to take-off and land, due to the risk of overturning, even with a small slope. Therefore, in this study, the conceptual design of a variable length landing gear capable of landing on a 15° slope was performed. Before landing, the distances to the landing point are measured using ultrasonic sensors, and the appropriate length of each landing gear is calculated. After that, the linear actuators are operated to adjust the length of the landing gear, and the aircraft lands vertically in a horizontal orientation. To verify the concept, a variable-length landing gear test model was produced. It was confirmed that the fuselage did not tilt, and the aircraft landed stably on a 15° slope.

최근 수직 이착륙이 요구되는 항공기가 늘어나고 있으며, 평지 외의 장소에서도 이착륙 할 필요성이 증가되고 있다. 그러나 고정식 착륙장치의 경우 작은 경사에도 동체의 전복 위험 때문에 이착륙에 어려움이 있다. 이러한 단점은 항공기 활용 영역을 제한하며, 탑승자의 안전을 위협할 수 있다. 따라서 본 연구에서는 15° 경사면에 착륙할 수 있는 길이 가변 랜딩기어 개념설계를 수행하였다. 항공기가 착륙하기 전에 초음파 센서를 사용하여 착륙지점까지의 거리를 측정하고, 이를 바탕으로 각 랜딩기어의 적정길이를 계산한다. 그리고, 선형 액추에이터를 구동하여 랜딩기어의 길이를 조절한 후 수평으로 착륙한다. 개념 검증을 위해 길이 가변 랜딩기어 시험 모델을 제작하였으며 15° 경사면에 착륙하였을 때 동체가 기울어지지 않고 안정적으로 착륙한 것을 확인하였다.

Keywords

Acknowledgement

이 논문은 2022년도 한국산업단지공단의 재원으로 울산 스마트제조고급인력양성사업의 지원을 받아 수행된 연구임

References

  1. I. K. Park, S. W. Choi, J. W. Jang "Impact Analysis of Oleo-pneumatic Nose Strut for Light Aircraft." Aerospace Engineering and Technology, vol. 6, no. 1, pp. 19-28, 2007
  2. J. J. Lee, M. J. Kim, Y. H. Kim, J. C. Shin and K. M. Hwang, "Composite Skid Landing Gear Optimal Design for Light VTOL UAV," Journal of Aerospace System Engineering, vol. 9, no. 4, pp. 55-61, 2015
  3. D. I. Kim, Y. S. Song, G. H. Kim and C. W. Kim, "A study on the Application of UAV for Korean Land Monitoring," Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, vol. 32, no. 1, pp. 29-38, 2014. https://doi.org/10.7848/KSGPC.2014.32.1.29
  4. G. T. Lee, "Mission Requirements and Development Trends of Rotary-Wing UAV," Journal of Aerospace Industry, pp. 36-49, 2003.
  5. K. H. Park and I. Y. Hong, "A Study on the Land Administration Support Using the Popular Rotary-Wing Unmanned Aerial Vehicle," Journal of the Association of Korean Geographers, vol. 6, no. 1, pp. 63-100, 2017. https://doi.org/10.25202/JAKG.6.1.5
  6. W.S. Park, J. E. Hwang, Y. H. Hyun, J. H. Hwang, J. S. Bae, T. and W. Kim, "Dynamic Characteristics Analysis of Landing Gear that Consider 6-Degree of Freedom of Helicopter," Journal of Aerospace System Engineering, vol. 2, no. 1, pp.1-6, March, 2008.
  7. EHEST, "EHEST Leaflet HE 1 Safety Considerations," EASA, Germany, pp. 16-18. 2010.
  8. M. Ikura, L. Miyashita, and M. Ishikawa, "Real-time Landing Gear Control System Based on Adaptive 3D Sensing for Safe Landing of UAV," 2020 IEEE/SICE International Symposium on System Integration (SII), Honolulu, HI, USA, pp. 759-764, 2020.
  9. S. H. Hwang, S. H. Lee, S. H. Jin and I. H. Lee, "Control Strategies for Landing Quadcopters on Ships with Legged Platform Based on Impedance Control," Journal of Korea Robotics Society, vol. 17, no. 1, pp. 48- 57, 2022. https://doi.org/10.7746/jkros.2022.17.1.048
  10. B. Stolz, T. Brodermann, E. Castiello, G. Englberger, D. Erne, J. Gasser, ... & M. Hutter, "An adaptive landing gear for extending the operational range of helicopters," In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1757-1763, 2018.
  11. G. Yashin, A. Egorov, Z. Darush, N. Zherdev and D. Tsetserukou, "LocoGear. Locomotion analysis of robotic landing gear for multicopters," IEEE Journal on Miniaturization for Air and Space Systems, vol. 1, no. 2, pp. 138-147, 2020. https://doi.org/10.1109/JMASS.2020.3015525
  12. UAM Team Korea, K-UAM Concept of Operations 1.0, UAM Team Korea, pp. 14-16, 2021.
  13. Republic of Korea Laws, Road Structure and Facility Standards Rules, Article 25, 2011.