DOI QR코드

DOI QR Code

Mode Analysis of Staged Combustion Cycle Liquid Rocket Engine

다단연소 사이클 액체로켓엔진 모드해석

  • Won Kook Cho (Rocket Engine Team, Korea Aerospace Research Institute) ;
  • Chang Ho Nam (Rocket Engine Team, Korea Aerospace Research Institute) ;
  • Sung Up Ha (Rocket Engine Team, Korea Aerospace Research Institute)
  • 조원국 (한국항공우주연구원 발사체엔진팀) ;
  • 남창호 (한국항공우주연구원 발사체엔진팀) ;
  • 하성업 (한국항공우주연구원 발사체엔진팀)
  • Received : 2022.11.21
  • Accepted : 2022.12.26
  • Published : 2023.06.30

Abstract

Mode analysis has been performed of an upper stage liquid rocket engine. Converged operating conditions were obtained by finding balanced propellant flow rate and pressure drop once mathematical models of the components of the staged combustion cycle engine have been defined. The accuracy of this method was verified by comparison against real engine test results. The pressure drops through fuel control valves of the preburner and main combustor were obtained to control the engine combustion chamber pressure and mixture ratio to predict the turbopump operating condition and pressure drops of components for various engine operating conditions. The present results are essential to develop a rocket engine verification program, and in the future, will be used to develop the high-performance staged combustion cycle engine.

상단 액체로켓엔진에 대한 모드 해석을 수행하였다. 다단연소 사이클 엔진의 구성품에 대한 수학적 모델을 정의한 후 추진제 유량과 압력 강하에 대한 균형조건을 찾음으로써 수렴된 작동조건을 구할 수 있었다. 상기 해석 방법은 엔진 시험결과와 비교함으로써 정확성을 확인하였다. 엔진의 연소압과 혼합비를 제어하기 위한 예연소기와 주연소기의 연료 제어 밸브 차압을 구하였으며 다양한 작동 조건에서 터보펌프 작동조건과 구성품의 차압량을 예측하였다. 본 연구결과는 로켓엔진 검증프로그램 개발을 위한 필수적인 정보로서 향후 고성능 다단연소 사이클 엔진 개발에 활용될 것이다.

Keywords

References

  1. W. K. Cho, S. Y. Park, C. H. Nam, and C. W. Kim, "Effect of propellant-supply pressure on liquid rocket engine performance," Trans. Korean Soc. Mechanical Engineers B., Vol.34, No.4, pp.443-448, 2010 https://doi.org/10.3795/KSME-B.2010.34.4.443
  2. C. Kim, Y. M. Han, N. Cho, S.-H. Kim, B. Yu, K.-J. Lee, Y. So, S. Woo, J.-H. Im, C. H. Hwang, J. Lee, and J. Kim, "Development trend of Korean Staged Combustion Cycle Rocket Engine," J. of the Korean Society of Propulsion Engineers, Vol.22, No.3, pp. 109-118, 2018 https://doi.org/10.6108/KSPE.2018.22.3.109
  3. C. Kim, J. Lee, S. Woo, Y. So, S. J. Yi, K.-J. Lee, N. Cho, Y. Han and J. Kim, "Development status of technology demonstration model for staged combustion cycle engine," J. of the Korean Society of Propulsion Engineers, Vol.23, No.4, pp. 104-111, 2019 https://doi.org/10.6108/KSPE.2019.23.4.104
  4. C.-H. Nam, Y. Moon and W.-S. Seol, "Definition of engine component performance test range of 75ft class gas generator cycle liquid propellant rocket engine," J. of the Korean Society of Propulsion Engineers, Vol.15, No.6, pp. 91-97, 2011
  5. L. Evgeny, M. Sergey, F. Victor, and T. Vadim, "Multifunctional mathematical simulation of thermodynamic cycles," personal contact, September 2003
  6. C. Goertz, A Modular Method for the Analysis of Liquid Rocket Engine Cycles," AIAA Paper 95-2966, July 1972
  7. S. Park and W. K. Cho, "Program development for the mode calculation of gas-generator cycle liquid rocket engine," 2008 KSPE Fall conference, pp.366~370, 2008
  8. W. K. Cho, and C. I. Kim, "Comparison of effectiveness for performance tuning of liquid rocket engine," Int. J. Aerospace System Engineering, Vol.5 No.2, pp.16-22, 2018
  9. C. H. Nam, KSLV-II 7tonf class engine 4G hot fire test report, Korea Aerospace Research Institute, 2018.
  10. B. J. McBride and S. Gordon, Computer program for calculation of complex chemical equilibrium compositions and applications, NASA reference publication 1311, 1996
  11. S. L. Dixon and, B. Eng, Fluid mechanics, thermodynamics of turbomachinery 3rd Ed., Butterworth-Heinemann, p.8, 1998