DOI QR코드

DOI QR Code

Dopamine and serotonin alterations by Hizikia fusiformis extracts under in vitro cortical primary neuronal cell cultures

  • Jae-Won Jung (Department of Food Science and Nutrition, Daegu Catholic University) ;
  • Ye-Jin Kim (Department of Food Science and Nutrition, Daegu Catholic University) ;
  • Jae Sue Choi (Department of Food and Life Sciences, Pukyoung National University) ;
  • Yukiori Goto (Department of Artificial Intelligence and Technology, Graduate School of Informatics, Kyoto University) ;
  • Young-A Lee (Department of Food Science and Nutrition, Daegu Catholic University)
  • Received : 2022.09.29
  • Accepted : 2023.01.05
  • Published : 2023.06.01

Abstract

BACKGROUND/OBJECTIVES: Hizikia fusiformis (HF) is a class of brown seaweeds whose active ingredients exert central nervous system protective effects, such as neuroprotection; however, the underlying mechanisms remain unknown. Given that dopamine (DA) and serotonin (5HT) are two major neurotransmitters involved in various psychiatric disorders and neuronal growth in early neurodevelopmental processes, we investigated whether HF extract could modulate the molecular expression associated with DA and 5HT transmission as well as the structural formation of neurons. MATERIALS/METHODS: In vitro cell cultures were prepared from cerebral cortical neurons obtained from CD-1 mice on embryonic day 14. Cultured cells were treated with 0.1, 1.0, or 10.0 ㎍/mL of HT extract for 24 h, followed by fluorescence immunostaining for DA and 5HT-related receptors and transporters and some neuronal structural formation-associated molecules. RESULTS: HF extract dose-dependently upregulated the expression levels of selective DA and 5HT receptors, and downregulated the levels of DA and 5HT transporters. Moreover, HF extract increased the neurofilament light chain expression. CONCLUSION: These results suggest that HF may modulate DA and 5HT transmission, thereby affecting neurodevelopment.

Keywords

Acknowledgement

This work was supported by research grants from Daegu Catholic University in 20201200.

References

  1. Cabana-Dominguez J, Torrico B, Reif A, Fernandez-Castillo N, Cormand B. Comprehensive exploration of the genetic contribution of the dopaminergic and serotonergic pathways to psychiatric disorders. Transl Psychiatry 2022;12:11.
  2. Lin SH, Lee LT, Yang YK. Serotonin and mental disorders: a concise review on molecular neuroimaging evidence. Clin Psychopharmacol Neurosci 2014;12:196-202. https://doi.org/10.9758/cpn.2014.12.3.196
  3. McCutcheon RA, Abi-Dargham A, Howes OD. Schizophrenia, dopamine and the striatum: from biology to symptoms. Trends Neurosci 2019;42:205-20. https://doi.org/10.1016/j.tins.2018.12.004
  4. Oades RD. Dopamine-serotonin interactions in attention-deficit hyperactivity disorder (ADHD). Prog Brain Res 2008;172:543-65. https://doi.org/10.1016/S0079-6123(08)00926-6
  5. Huang KW, Ochandarena NE, Philson AC, Hyun M, Birnbaum JE, Cicconet M, Sabatini BL. Molecular and anatomical organization of the dorsal raphe nucleus. eLife 2019;8:e46464.
  6. Gamo NJ, Arnsten AF. Molecular modulation of prefrontal cortex: rational development of treatments for psychiatric disorders. Behav Neurosci 2011;125:282-96. https://doi.org/10.1037/a0023165
  7. Wang DH, Wong-Lin K. Comodulation of dopamine and serotonin on prefrontal cortical rhythms: a theoretical study. Front Integr Nuerosci 2013;7:54.
  8. Di Pietro NC, Seamans JK. Dopamine and serotonin interactively modulate prefrontal cortex neurons in vitro. Biol Psychiatry 2011;69:1204-11. https://doi.org/10.1016/j.biopsych.2010.08.007
  9. Salatino-Oliveira A, Rohde LA, Hutz MH. The dopamine transporter role in psychiatric phenotypes. Am J Med Genet B Neuropsychiatr Genet 2018;177:211-31. https://doi.org/10.1002/ajmg.b.32578
  10. Spies M, Knudsen GM, Lanzenberger R, Kasper S. The serotonin transporter in psychiatric disorders: insights from PET imaging. Lancet Psychiatry 2015;2:743-55. https://doi.org/10.1016/S2215-0366(15)00232-1
  11. Begum R, Howlader S, Mamun-Or-Rashid AN, Rafiquzzaman SM, Ashraf GM, Albadrani GM, Sayed AA, Peluso I, Abdel-Daim MM, Uddin MS. Antioxidant and signal-modulating effects of brown seaweed-derived compounds against oxidative stress-associated pathology. Oxid Med Cell Longev 2021;2021:9974890.
  12. Um MY, Lim DW, Son HJ, Cho S, Lee C. Phlorotannin-rich fraction from Ishige foliacea brown seaweed prevents the scopolamine-induced memory impairment via regulation of ERK-CREB-BDNF pathway. J Funct Foods 2018;40:110-6. https://doi.org/10.1016/j.jff.2017.10.014
  13. Guo F, Huang C, Cui Y, Momma H, Niu K, Nagatomi R. Dietary seaweed intake and depressive symptoms in Japanese adults: a prospective cohort study. Nutr J 2019;18:58.
  14. Remya RR, Samrot AV, Kumar SS, Mohanavel V, Karthick A, Chinnaiyan VK, Umapathy D, Muhibbullah M. Bioactive potential of brown algae. Adsorpt Sci Technol 2022;2022:9104835.
  15. Kang SM, Cha SH, Ko JY, Kang MC, Kim D, Heo SJ, Kim JS, Heu MS, Kim YT, Jung WK, et al. Neuroprotective effects of phlorotannins isolated from a brown alga, Ecklonia cava, against H2O2-induced oxidative stress in murine hippocampal HT22 cells. Environ Toxicol Pharmacol 2012;34:96-105. https://doi.org/10.1016/j.etap.2012.03.006
  16. Wu W, Han H, Liu J, Tang M, Wu X, Cao X, Zhao T, Lu Y, Niu T, Chen J, et al. Fucoxanthin prevents 6-OHDA-induced neurotoxicity by targeting Keap1. Oxid Med Cell Longev 2021;2021:6688708.
  17. Meinita MD, Harwanto D, Sohn JH, Kim JS, Choi JS. Hizikia fusiformis: pharmacological and nutritional properties. Foods 2021;10:1660.
  18. Seong SH, Nguyen DH, Wagle A, Woo MH, Jung HA, Choi JS. Experimental and computational study to reveal the potential of non-polar constituents from Hizikia fusiformis as dual protein tyrosine phosphatase 1B and α-glucosidase Inhibitors. Mar Drugs 2019;17:302.
  19. Colella R, Lu C, Hodges B, Wilkey DW, Roisen FJ. GM1 enhances the association of neuron-specific MAP2 with actin in MAP2-transfected 3T3 cells. Brain Res Dev Brain Res 2000;121:1-9. https://doi.org/10.1016/S0165-3806(00)00018-3
  20. Schilling K, Barco EB, Rhinehart D, Pilgrim C. Expression of synaptophysin and neuron-specific enolase during neuronal differentiation in vitro: effects of dimethyl sulfoxide. J Neurosci Res 1989;24:347-54. https://doi.org/10.1002/jnr.490240302
  21. Yuan A, Rao MV, Veeranna , Nixon RA. Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harb Perspect Biol 2017;9:a018309.
  22. Niederkofler V, Asher TE, Dymecki SM. Functional interplay between dopaminergic and serotonergic neuronal systems during development and adulthood. ACS Chem Neurosci 2015;6:1055-70. https://doi.org/10.1021/acschemneuro.5b00021
  23. Kang SY, Kim E, Kang I, Lee M, Lee Y. Anti-diabetic effects and anti-inflammatory effects of Laminaria japonica and Hizikia fusiforme in skeletal muscle: in vitro and in vivo model. Nutrients 2018;10:491.
  24. Ling WH, Jones PJ. Dietary phytosterols: a review of metabolism, benefits and side effects. Life Sci 1995;57:195-206. https://doi.org/10.1016/0024-3205(95)00263-6
  25. Hannan MA, Dash R, Sohag AAM, Moon IS. Deciphering molecular mechanism of the neuropharmacological action of fucosterol through integrated system pharmacology and in silico analysis. Mar Drugs 2019;17:639.
  26. Dimitrova-Shumkovska J, Krstanoski L, Veenman L. Potential beneficial actions of fucoidan in brain and liver injury, disease, and intoxication-potential implication of sirtuins. Mar Drugs 2020;18:242.
  27. Peng J, Yuan JP, Wu CF, Wang JH. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs 2011;9:1806-28. https://doi.org/10.3390/md9101806
  28. Zhen XH, Quan YC, Jiang HY, Wen ZS, Qu YL, Guan LP. Fucosterol, a sterol extracted from Sargassum fusiforme, shows antidepressant and anticonvulsant effects. Eur J Pharmacol 2015;768:131-8. https://doi.org/10.1016/j.ejphar.2015.10.041
  29. Luo D, Zhang Q, Wang H, Cui Y, Sun Z, Yang J, Zheng Y, Jia J, Yu F, Wang X, et al. Fucoidan protects against dopaminergic neuron death in vivo and in vitro. Eur J Pharmacol 2009;617:33-40. https://doi.org/10.1016/j.ejphar.2009.06.015
  30. Paudel P, Seong SH, Jung HA, Choi JS. Characterizing fucoxanthin as a selective dopamine D3/D4 receptor agonist: relevance to Parkinson's disease. Chem Biol Interact 2019;310:108757.
  31. Song MY, Ku SK, Kim HJ, Han JS. Low molecular weight fucoidan ameliorating the chronic cisplatin-induced delayed gastrointestinal motility in rats. Food Chem Toxicol 2012;50:4468-78. https://doi.org/10.1016/j.fct.2012.09.020
  32. Seong SH, Paudel P, Choi JW, Ahn DH, Nam TJ, Jung HA, Choi JS. Probing multi-target action of phlorotannins as new monoamine oxidase inhibitors and dopaminergic receptor modulators with the potential for treatment of neuronal disorders. Mar Drugs 2019;17:377.
  33. Artiges E, Leroy C, Dubol M, Prat M, Pepin A, Mabondo A, de Beaurepaire R, Beaufils B, Korwin JP, Galinowski A, et al. Striatal and extrastriatal dopamine transporter availability in schizophrenia and its clinical correlates: a voxel-based and high-resolution PET study. Schizophr Bull 2017;43:1134-42. https://doi.org/10.1093/schbul/sbw192
  34. Nakamura K, Sekine Y, Ouchi Y, Tsujii M, Yoshikawa E, Futatsubashi M, Tsuchiya KJ, Sugihara G, Iwata Y, Suzuki K, et al. Brain serotonin and dopamine transporter bindings in adults with high-functioning autism. Arch Gen Psychiatry 2010;67:59-68. https://doi.org/10.1001/archgenpsychiatry.2009.137
  35. Pizzagalli DA, Berretta S, Wooten D, Goer F, Pilobello KT, Kumar P, Murray L, Beltzer M, Boyer-Boiteau A, Alpert N, et al. Assessment of striatal dopamine transporter binding in individuals with major depressive disorder: in vivo positron emission tomography and postmortem evidence. JAMA Psychiatry 2019;76:854-61. https://doi.org/10.1001/jamapsychiatry.2019.0801
  36. Tiger M, Varnas K, Okubo Y, Lundberg J. The 5-HT1B receptor - a potential target for antidepressant treatment. Psychopharmacology (Berl) 2018;235:1317-34. https://doi.org/10.1007/s00213-018-4872-1
  37. Gaetani L, Blennow K, Calabresi P, Di Filippo M, Parnetti L, Zetterberg H. Neurofilament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry 2019;90:870-81. https://doi.org/10.1136/jnnp-2018-320106
  38. Zhang L, Bai J, Undie AS, Bergson C, Lidow MS. D1 dopamine receptor regulation of the levels of the cell-cycle-controlling proteins, cyclin D, P27 and Raf-1, in cerebral cortical precursor cells is mediated through cAMP-independent pathways. Cereb Cortex 2005;15:74-84. https://doi.org/10.1093/cercor/bhh110
  39. Song ZM, Undie AS, Koh PO, Fang YY, Zhang L, Dracheva S, Sealfon SC, Lidow MS. D1 dopamine receptor regulation of microtubule-associated protein-2 phosphorylation in developing cerebral cortical neurons. J Neurosci 2002;22:6092-105. https://doi.org/10.1523/JNEUROSCI.22-14-06092.2002
  40. Lotto B, Upton L, Price DJ, Gaspar P. Serotonin receptor activation enhances neurite outgrowth of thalamic neurones in rodents. Neurosci Lett 1999;269:87-90. https://doi.org/10.1016/S0304-3940(99)00422-X
  41. Ji B, Higa K, Soontornniyomkij V, Miyanohara A, Zhou X. A novel animal model for neuroinflammation and white matter degeneration. PeerJ 2017;5:e3905.
  42. Ehlers MD, Fung ET, O'Brien RJ, Huganir RL. Splice variant-specific interaction of the NMDA receptor subunit NR1 with neuronal intermediate filaments. J Neurosci 1998;18:720-30. https://doi.org/10.1523/JNEUROSCI.18-02-00720.1998
  43. Kim OJ, Ariano MA, Lazzarini RA, Levine MS, Sibley DR. Neurofilament-M interacts with the D1 dopamine receptor to regulate cell surface expression and desensitization. J Neurosci 2002;22:5920-30. https://doi.org/10.1523/JNEUROSCI.22-14-05920.2002
  44. Diekamper E, Brix B, Stocker W, Vielhaber S, Galazky I, Kreissl MC, Genseke P, Duzel E, Kortvelyessy P. Neurofilament levels are reflecting the loss of presynaptic dopamine receptors in movement disorders. Front Neurosci 2021;15:690013.
  45. Riad M, Garcia S, Watkins KC, Jodoin N, Doucet E, Langlois X, el Mestikawy S, Hamon M, Descarries L. Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol 2000;417:181-94. https://doi.org/10.1002/(SICI)1096-9861(20000207)417:2<181::AID-CNE4>3.0.CO;2-A
  46. Hjorth S, Suchowski CS, Galloway MP. Evidence for 5-HT autoreceptor-mediated, nerve impulse-independent, control of 5-HT synthesis in the rat brain. Synapse 1995;19:170-6. https://doi.org/10.1002/syn.890190304
  47. Hagan CE, McDevitt RA, Liu Y, Furay AR, Neumaier JF. 5-HT(1B) autoreceptor regulation of serotonin transporter activity in synaptosomes. Synapse 2012;66:1024-34. https://doi.org/10.1002/syn.21608
  48. Hou H, Tian M, Zhang H. Positron emission tomography molecular imaging of dopaminergic system in drug addiction. Anat Rec (Hoboken) 2012;295:722-33. https://doi.org/10.1002/ar.22457
  49. Gryglewski G, Lanzenberger R, Kranz GS, Cumming P. Meta-analysis of molecular imaging of serotonin transporters in major depression. J Cereb Blood Flow Metab 2014;34:1096-103. https://doi.org/10.1038/jcbfm.2014.82