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A NOTE ON UNICITY OF MEROMORPHIC FUNCTIONS

IN SEVERAL VARIABLES

Yezhou Li and Heqing Sun

Abstract. Let f(z) be a meromorphic function in several variables sat-
isfying

lim sup
r→∞

log T (r, f)

r
= 0.

We mainly investigate the uniqueness problem on f in Cm sharing poly-

nomial or periodic small function with its difference polynomials from a

new perspective. Our main theorems can be seen as the improvement
and extension of previous results.

1. Introduction and main results

Let f(z) and g(z) be two meromorphic functions on Cm, and α ∈ P1 =
C1 ∪ {∞}. If f −α and g−α have the same zeros with the same multiplicities
(ignoring multiplicities), we say that f and g share α CM (IM). Certainly,
all CM shared values are IM shared values as well. It is well-known that in
1926, Nevanlinna [16] proved that if two non-constant meromorphic functions
on complex plane C1 share five distinct values IM in P1, then they must be
equal identically.

As we know, the numbers of distinct values in Nevanlinna five-value theorem
cannot be reduced to four. For instance, entire functions ez and e−z share
0, 1,−1 and ∞ IM in P1, but ez ̸= e−z. Note here that they have a shared
value ∞. In 1997, Li [12] further considered the case of sharing small functions
(not including the constant function ∞) for entire functions, and proved that
two non-constant entire functions in Cm must be identically equal if they share
four distinct small meromorphic functions.

In this paper, we assume that the reader is familiar with standard notations
and terms in the value distribution theory such as T (r, f) and m(r, f), etc.
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(see, e.g., [9, 17, 18]). A meromorphic function α(z) on Cm is called a small
function with respect to f if T (r, α) = o(T (r, f)) as r → ∞ outside a possible
exceptional set of finite logarithmic measure. Denote by S(f) the family of all
small functions of f(z). The order ρ(f) and the hyper-order ρ2(f) of f are,
respectively, defined by

ρ(f) = lim sup
r→∞

log T (r, f)

log r
, ρ2(f) = lim sup

r→∞

log log T (r, f)

log r
.

In the last decades, uniqueness problems on meromorphic function with
its derivative or differential polynomial have been studied deeply (see, e.g.,
[10, 13, 14]). In 2001, Li and Yang [14] investigated the uniqueness of entire
function f sharing a finite value a(̸= 0) CM in P1 with f ′ and f (n), and they
claimed that f must satisfy

f(z) = becz − a(1− c)

c
,

where b, c are non-zero constants with cn−1 = 1, n ∈ N+(≥ 2). Meanwhile, Li
and Yang also considered the case of general higher order differential polynomial

L(f) := a1f
′ + a2f

′′ + · · ·+ anf
(n), an ̸= 0,

with a1, a2, . . . , an being constants, and the corresponding uniqueness result
has been obtained (see, [9, Theorem 2.104]).

With the establishment of difference analogues of the lemma on the loga-
rithmic derivative, the research on uniqueness of meromorphic function with its
difference or difference operators was also widely concerned (see, e.g., [3–5, 7,
11,19]). Let c = (c1, c2, . . . , cm) ∈ Cm\{0}. For a given meromorphic function
f(z) : Cm → P1, we define its shift by f(z + c) and its difference operators by

∆cf(z) = f(z1 + c1, z2 + c2, . . . , zm + cm)− f(z1, z2, . . . , zm),

∆n
c f(z) = ∆c(∆

n−1
c f(z)), (n ∈ N, n ≥ 2)

for any z = (z1, z2, . . . , zm) ∈ Cm. In particular, we set ∆0
cf(z) = f(z). By

the definition of ∆n
c f(z), one knows that ∆

n
c f(z) =

∑n
k=0(−1)n−k

(
n
k

)
f(z+kc)

and
∑n

k=0(−1)n−k
(
n
k

)
= 0 for k ∈ N. Hence, the exact difference ∆n

c f(z)( ̸≡ 0)
can be extended to a general form (see [15])

P0(f) = a0f(z) + a1f(z + c) + · · ·+ anf(z + nc), n ∈ N+,

where z ∈ Cm, c ∈ Cm\{0} and ak ∈ C are not all zero complex num-
bers satisfying

∑n
k=0 ak = 0. Obviously, P0(f) = ∆n

c f(z) provided that

ak = (−1)n−k
(
n
k

)
. In 2018, Deng et al. [6] studied the uniqueness problem

for meromorphic functions sharing polynomial with their difference operators,
and obtained the following result.

Theorem 1.1 ([6]). Let f(z) be a non-constant meromorphic function of finite
order, and a(z) be a non-constant polynomial in one complex variable. If f(z),
∆cf(z) and ∆n

c f(z) share a(z), ∞ CM, then f(z) = ∆cf(z) for all z ∈ C1.
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On the other hand, many authors have also investigated the case of mero-
morphic functions that share periodic small function with their difference op-
erators or difference polynomial. In [8], Gao et al. considered the meromorphic
function f(z) with ρ2(f) < 1 on C1, and proved that if f(z) and its exact dif-
ference ∆n

1f(z)( ̸≡ 0) share three distinct periodic small functions with period
1 CM, then ∆n

1f(z) ≡ f(z). In [15], Liu and Zhang, using the value distribu-
tion theory for meromorphic functions in several complex variables, obtained a
difference analogue of [9, Theorem 2.104] on meromorphic function f(z) with
its difference polynomial P0(f). We restated it as follows.

Theorem 1.2 ([15]). Let f : Cm → P1 be a non-constant meromorphic func-
tion of finite order, and let b(z), d(z)( ̸≡ 0) ∈ S(f) be two periodic meromorphic
functions with period c, where z, c ∈ Cm. If f(z) − b(z), P0(f) − d(z) and
∆cP0(f)− d(z) share 0, ∞ CM, then P0(f) = ∆cP0(f).

It is known that logarithmic difference lemma plays an important role in the
study of uniqueness problem. In 2020, Cao and Xu [2, Theorem 2.1] obtained
a new version of the logarithmic difference lemma for meromorphic function
f(z) on Cm such that

(1.1) lim sup
r→∞

log T (r, f)

r
= 0.

By simple analysis, one can deduce that the set of meromorphic functions
satisfying the condition (1.1) consists of all meromorphic functions with hyper-
order ρ2(f) < 1 and some of hyper-order ρ2(f) = 1. Motivated by this, one
naturally asks whether the growth condition of meromorphic function of “finite
order” in Theorem 1.1 and Theorem 1.2 can be relaxed to condition (1.1)?

The aim of this paper is to give a positive answer to the above question
using different methods from that in [6, 15]. Here, we further consider a more
general polynomial

(1.2) P (f) =

n∑
k=0

mk(z)f(z + kc), (n ∈ N, n ≥ 2),

where mk(z) ∈ S(f) are non-zero polynomials satisfying
∑n

k=0 mk(z) = 0 for
z ∈ Cm (0 ≤ k ≤ n). It is obvious that P (f) can be degenerate into P0(f)
provided that mk(z) = ak (0 ≤ k ≤ n). Firstly, we get an extension of Theorem
1.1 for meromorphic functions satisfying (1.1) from one complex variable to
several complex variables. We show our result as follows.

Theorem 1.3. Let f(z) be a transcendental meromorphic function for z ∈ Cm

satisfying

lim sup
r→∞

log T (r, f)

r
= 0,

and a(z) be a non-constant polynomial on Cm. If f(z), ∆cf(z) and P (f) share
a(z), ∞ CM, then ∆cf(z) = Af(z) + (1 − A)a(z), where A is a non-zero
constant. In particular, if P (f) = ∆n

c f(z), then f(z) ≡ ∆cf(z).
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Let m = 2, c = (1, 1) and a(̸= 0) be a finite constant. We set f(z) =
eπi(z1+z2) + a. By simple calculation, one can deduce that ∆cf(z) = P (f) =

0, and f , ∆cf(z), P (f) share a, ∞ CM, but ∆cf(z)−a
f−a = −a

eπi(z1+z2) is not a

constant. This implies that the condition “a(z) is a non-constant polynomial”
in Theorem 1.3 is necessary.

Remark 1.4. According to the result of Theorem 1.3, the type of function f(z)
can be roughly given. Consider the meromorphic solution f(z) of the difference
equation

∆cf(z) = Af(z) + (1−A)a(z)

on Cm. If m = 1, it follows from the basic knowledge of difference equation
that f(z) = (1 + A)

z
c κ1(z) + Q1(z), where κ1(z) is a c-periodic function and

Q1(z) is a polynomial such that Q1(z) = 0 when A = 1. For the case of m ≥ 2,
we can also roughly know the expression of such function f(z) under certain
conditions. For example, m = 2 and a(z) = αz1 + βz2 + γ (α, β, γ are complex
numbers), one can deduce that

f(z) = (1+A)
b′z1+b′′z2
b′c1+b′′c2 κ2(z)+

A− 1

A
(αz1+βz2)+

A− 1

A2
(αc1+βc2)+

A− 1

A
γ,

where z = (z1, z2), c = (c1, c2) ̸= (0, 0), b′, b′′ ∈ C1\{0} and κ2(z) is a c-periodic
function on C2.

The following examples show that the condition and conclusions of Theorem
1.3 can be satisfied in the higher dimension space Cm (m ≥ 2).

Example 1.5. Let m = 2, n = 3, c = (0, 2), z = (z1, z2). Suppose that
a(z) = αz1 + βz2, where α, β ∈ C1\{0}, and that P (f) = −7f(z) + 15f(z +
c) − 10f(z + 2c) + 2f(z + 3c), i.e., P (f) ̸≡ ∆3

cf(z). We can easily know that
the meromorphic function

f(z) = 3
z1+z2

2
ez1+πiz2

z1
+

αz1 + βz2
2

+
β

2

is a solution of difference equation f(z + c) − 3f(z) + a(z) = 0. Obviously,
f(z) − a(z), ∆cf(z) − a(z) and P (f) − a(z) share 0, ∞ CM, and ∆cf(z) ≡
2f(z)− a(z).

Example 1.6. Let m = 3, n = 2, c = (1, 1, 0), z = (z1, z2, z3). Set f(z) =

2
z1+z2

2
eπi(z1+z2)

z3
. Then f(z + kc) = 2kf(z) (k = 0, 1, 2) and P (f) = (m0(z) +

2m1(z) + 4m2(z))f(z).
Case 1: Set m0(z) = 2(z1 + z2 + z3) + 3, m1(z) = −3(z1 + z2 + z3)− 5 and

m2(z) = z1 + z2 + z3 + 2, i.e., P (f) ̸≡ ∆2
cf(z). Obviously, f(z), ∆cf(z) and

P (f) share non-constant polynomial a(z), ∞ CM, and ∆cf(z) ≡ f(z).
Case 2: Set m0(z) = 1, m1(z) = −2 and m2(z) = 1, i.e., P (f) ≡ ∆2

cf(z).
Then f(z), ∆cf(z), ∆

2
cf(z) share polynomial a(z), ∞ CM, and f(z) ≡ ∆cf(z).
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Next, we consider the uniqueness problem of meromorphic function f(z)
sharing periodic small functions with P (f) and ∆cP (f) under the condition
(1.1), which is an accurate extension of Theorem 1.2.

Theorem 1.7. Let f(z) be a transcendental meromorphic function for z ∈ Cm

satisfying

lim sup
r→∞

log T (r, f)

r
= 0,

and let b(z), d(z)( ̸≡ 0) ∈ S(f) be two periodic meromorphic functions with
period c. If f(z)− b(z), P (f)− d(z) and ∆cP (f)− d(z) share 0, ∞ CM, then
P (f) ≡ ∆cP (f).

Similarly, the structure of the function f(z) can also be derived from the
equation P (f) = ∆cP (f) under some certain cases. The following examples
show that the conclusion of Theorem 1.7 is reasonable.

Example 1.8. Set m = 2, c = (πi, πi), z = (z1, z2), d(z) ≡ 3, and b(z) is a
small periodic function with period c. Let f(z) = ez1+z2 + b(z) and n(≥ 2) ∈
N+. Then f(z + kc) ≡ f(z) for all 0 ≤ k ≤ n. Obviously, f(z)− b(z) = ez1+z2 ,
P (f)− d(z) = −3, ∆cP (f)− d(z) = −3 share 0 CM, and P (f) ≡ ∆cP (f).

Example 1.9. Set m = 2, c = (0, ln 2), z = (z1, z2) and f(z) = 1
z1
ez1+z2 . Let

n = 2. Then P (f) = (m0(z) + 2m1(z) + 4m2(z))
1
z1
ez1+z2 .

Case 1: Set m0(z) = 2z1 − 5, m1(z) = −3z1 + 6 and m2(z) = z1 − 1,
i.e., P (f) ̸≡ ∆2

cf(z). If b(z) ≡ 1, d(z) ≡ 3, then f(z) − b(z) = 1
z1
ez1+z2 − 1,

P (f)−d(z) = 3( 1
z1
ez1+z2−1), ∆cP (f)−d(z) = 3( 1

z1
ez1+z2−1) share 0, ∞ CM.

Thus, P (f) ≡ ∆cP (f). However, f(z) ̸≡ P (f) and f(z) ̸≡ ∆cP (f).
Case 2: Assume that b(z) ≡ d(z)( ̸≡ 0). Set m0(z) = 1, m1(z) = −2 and

m2(z) = 1, i.e., P (f) ≡ ∆2
cf(z). Then f(z), P (f), ∆cP (f) share b(z), ∞ CM,

and P (f) ≡ ∆cP (f) ≡ f(z).

If b(z) ≡ d(z)( ̸≡ 0) and mk(z) = (−1)n−k
(
n
k

)
, we obtain following result.

Corollary 1.10. Let f(z) be a non-constant meromorphic function for z ∈ Cm

satisfying (1.1), and let b(z)(̸≡ 0) ∈ S(f) be a periodic meromorphic function
with period c. If f(z), ∆n

c f(z), ∆
n+1
c f(z) share b(z), ∞ CM, then ∆n

c f(z) =
∆n+1

c f(z).

The remainder of this paper is organized as follows. In Section 2, some
basic notations and auxiliary lemmas on the value distribution theory on Cm

are introduced, which are used frequency in the later proofs. The details of the
proofs of our main results are showed in Sections 3 and 4, respectively.

2. Preliminary lemmas

We firstly recall some basis notions in several complex variables (see also
[17, 18]). Set ∥z∥2 = |z1|2 + |z2|2 + · · · + |zm|2 for z = (z1, z2, . . . , zm) ∈ Cm.
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Let

Sm(r) = {z ∈ Cm : ∥z∥ = r}, Bm(r) = {z ∈ Cm : ∥z∥ ≤ r}

for r > 0. Introducing the differential operators d = ∂ + ∂, dc =
√
−1
4π (∂ − ∂).

This implies ddc =
√
−1
2π ∂∂. For z ∈ Cm\{0}, write

ηm(z) := ddc∥z∥2, σm(z) := dc log ∥z∥2 ∧
(
ddc log ∥z∥2

)m−1
.

Let f(z) be a meromorphic function on Cm and a ∈ P1. If f−1(a) ̸= Cm, we
denote by ν0f−a the a-divisor of f , and set

nf (r, a) = r2−2m

∫
Bm(r)∩ν0

f−a

ηm−1
m (z).

Then the counting function of ν0f−a is defined by

Nf (r, a) =

∫ r

0

[nf (t, a)− nf (0, a)]
dt

t
+ nf (0, a) log r,

where nf (0, a) is the Lelong number of ν0f−a at the origin. If

ν0f−a = min{1, ν0f−a},

then we can also define the reduced counting function Nf (r, a). Usually, we
denote by N(r, 1

f−a ) = Nf (r, a) for a ∈ C and N(r, f) = Nf (r,∞) for a = ∞,

respectively. The proximity function of f is defined by

mf (r, a) =


∫
Sm(r)

log+ | f(z) | σm(z), if a = ∞,∫
Sm(r)

log+
1

| f(z)− a |
σm(z), if a ̸= ∞,

where log+ x=max{log x, 0}. Similar, we usually replace the notationsmf (r, a)
by m(r, 1

f−a ) for a ∈ C and m(r, f) for a = ∞. Then Nevanlinna characteristic

function of f is defined as T (r, f) = mf (r,∞) + Nf (r,∞). A meromorphic
function f(z) on Cm is called transcendental provided that

lim sup
r→∞

T (r, f)

log r
= ∞.

When a ̸= ∞, the first main theorem can be stated as T (r, f) = mf (r, a) +
Nf (r, a) + O(1). To prove our main theorems in this paper, we need the fol-
lowing lemmas.

Lemma 2.1 ([2]). Let f(z) be a non-constant meromorphic function on Cm,

and let c ∈ Cm\{0}. If lim sup
r→∞

log T (r,f)
r = 0, then

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= o(T (r, f))
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and

T (r, f(z + c)) = T (r, f) + o(T (r, f)), N(r, f(z + c)) = N(r, f) + o(N(r, f))

holds for all r ̸∈ E, where E is a set with zero upper density measure, i.e.,
densE = lim sup

r→∞

∫
E∩[1,r]

1
rdt = 0.

Lemma 2.2 ([1, Corollary 4.5]). Let f1(z), f2(z), . . . , fn(z) be n non-zero mero-
morphic functions on Cm, and g1(z), . . . , gn(z) be n entire functions on Cm

satisfying
n∑

i=1

fi(z)e
gi(z) ≡ 0.

If for all 1 ≤ i ≤ n

T (r, fi) = o(T (r, egj−gk)), (1 ≤ j ̸= k ≤ n),

then fi(z) ≡ 0 for 1 ≤ i ≤ n.

Lemma 2.3 ([15, Lemma 2.7]). Let f(z) be a polynomial in z ∈ Cm. If
f(z) is of degree n(≥ 1), then deg(f(z + c) − f(z)) < n holds for any given
c = (c1, c2, . . . , cm) ∈ Cm.

Remark 2.4. Let f(z) be a non-constant polynomial on Cm and P (f) be
defined as in (1.2). Then degP (f(z)) < deg f(z) holds for any given c =
(c1, c2, . . . , cm).

Proof. Based on a similar argument as to that in [15, Lemma 2.7], we assume
that f(z) is a polynomial of degree n(≥ 1). Set

f(z) =
∑
|I|=n

aI(z1)
i1(z2)

i2 · · · (zm)im +

n−1∑
|I|=0

bI(z1)
i1(z2)

i2 · · · (zm)im ,

where aI( ̸≡ 0), bI are complex numbers and I = (i1, i2, . . . , im) ∈ Nm satisfies
|I| = i1 + i2 + · · ·+ im. For c = (c1, c2, . . . , cm) ∈ Cm and k ∈ N, one has

f(z + kc) =
∑
|I|=n

aI(z1 + kc1)
i1(z2 + kc2)

i2 · · · (zm + kcm)im

+

n−1∑
|I|=0

bI(z1 + kc1)
i1(z2 + kc2)

i2 · · · (zm + kcm)im

=
∑
|I|=n

aI(z1)
i1(z2)

i2 · · · (zm)im +Dn−1,k(z),

where Dn−1,k(z) is of degree at most n − 1. Noting that
∑n

k=0 mk(z) = 0, it
follows from (1.2) that

P (f) =

n∑
k=0

mk(z)

∑
|I|=n

aI(z1)
i1(z2)

i2 · · · (zm)im

+

n∑
k=0

mk(z)Dn−1,k(z)
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=

n∑
k=0

mk(z)Dn−1,k(z).

Since mk(z) ∈ S(f) and f(z) is a non-constant polynomial, then mk (0 ≤ k ≤
n) are non-zero constants. It follows that

deg(P (f)) = max
0≤k≤n

deg{Dn−1,k(z)} ≤ n− 1.

This completes the proof. □

Lemma 2.5 ([19, Lemma 5]). Let f(z) be a non-constant meromorphic func-
tion for z ∈ Cm and aj(z) (j = 1, 2, . . . , q) be distinct small functions with
respect to f . If q ≥ 3, then

q

3
T (r, f) ≤

q∑
j=1

N

(
r,

1

f − aj

)
+ o(T (r, f))

holds for all r ∈ [0,+∞) outside a Borel subset F of the interval [0,+∞) with∫
F
dr < +∞.

For brevity, throughout this paper, we denote by S(r, f) any quantity satis-
fying S(r, f) = o(T (r, f)) holds for all sufficiently large r at most outside two
possible exceptional sets of zero upper density and finite linear measure, which
may vary in each appearance.

3. The proof of Theorem 1.3

Since f(z), ∆cf(z) and P (f) share a(z), ∞ CM, then there exist two entire
functions α(z) and β(z) such that

(3.1)
P (f)− a(z)

f(z)− a(z)
= eα(z),

∆cf(z)− a(z)

f(z)− a(z)
= eβ(z).

Set F (z) = f(z) − a(z). Owing to a(z) ∈ S(f), we have T (r, f) = T (r, F ) +
S(r, f) and a(z) ∈ S(F ). By the definitions of P (f) and ∆cf(z), one has

(3.2) ∆cf(z) = ∆cF (z) + ∆ca(z), P (f(z)) = P (F (z)) + P (a(z)).

It follows from (3.1) that

P (F ) + P (a)− a(z)

F (z)
= eα(z),

∆cF (z) + ∆ca(z)− a(z)

F (z)
= eβ(z).

Noting that P (a)− a(z) ̸≡ 0 and ∆ca(z)− a(z) ̸≡ 0. We set

Φ(z) := (a(z)− P (a))eβ(z) − (a(z)−∆ca(z))e
α(z)

=
(a(z)− P (a))∆cF (z)− (a(z)−∆ca(z))P (F )

F (z)
.(3.3)

Since a(z) ∈ S(F ), together with (3.3), (1.2) and Lemma 2.1, one can obtain
that T (r,Φ) = S(r, F ). Next, the fact that T (r, eα) = S(r, f) and T (r, eβ) =
S(r, f) will be proved. We consider two cases.



DIFFERENCE UNIQUENESS IN SEVERAL COMPLEX VARIABLES 867

• Φ(z) ≡ 0. This means (a(z) − P (a))∆cF (z) = (a(z) − ∆ca(z))P (F ) for
any z ∈ Cm. By (3.2) and some calculations, one can deduce

(a(z)− P (a))(∆cf(z)− a(z)) = (a(z)−∆ca(z))(P (f)− a(z)).

Further, it follows from (3.1) and the above equality that

P (f)− a(z)

∆cf(z)− a(z)
= eα(z)−β(z) =

a(z)− P (a)

a(z)−∆ca(z)
.

If eα(z)−β(z) is not a constant, then it must be transcendental, which is impos-
sible for a(z) is a polynomial. Therefore, we may suppose that there exists a

non-zero constant C such that eα(z)−β(z) = C. It follows that a(z)−P (a)
a(z)−∆ca(z)

= C.

By Lemma 2.3 and Remark 2.4, we know that deg∆ca(z) < deg a(z) and
degP (a) < deg a(z). Then, one can deduce that C = 1 and a(z) is a constant
polynomial, which is a contradiction.

• Φ(z) ̸≡ 0. It follows from (3.3) that

(a(z)− P (a))
eβ(z)

Φ(z)
= 1 + (a(z)−∆ca(z))

eα(z)

Φ(z)
.

By Lemma 2.5 and the fact that T (r,Φ) = S(r, F ), a(z) ∈ S(F ), one has

T

(
r, (a− P (a))

eβ

Φ

)
≤ N

(
r, (a− P (a))

eβ

Φ

)
+N

(
r,

Φ

(a− P (a))eβ

)
+N

(
r,

1

(a− P (a)) e
β

Φ − 1

)
+ S

(
r, (a− P (a))

eβ

Φ

)
≤ N

(
r,

Φ

(a−∆ca)eα

)
+ S

(
r, (a− P (a))

eβ

Φ

)
+ S(r, F )

= S

(
r, (a− P (a))

eβ

Φ

)
+ S(r, F ).

This implies that T (r, (a− P (a)) e
β

Φ ) = S(r, F ) and

T (r, eβ) ≤ T

(
r, (a− P (a))

eβ

Φ

)
+ T

(
r,

Φ

a− P (a)

)
= S(r, F ).

By (3.3), we can also get T (r, eα) = S(r, F ). Owing to T (r, f) = T (r, F ) +
S(r, f), then T (r, eα) = S(r, f), T (r, eβ) = S(r, f).

To complete the proof of Theorem 1.3, we first consider the case of β(z) is
a non-constant entire function. Using the second equation in (3.1), we have

f(z + c) = ∆cf(z) + f(z)

= (eβ(z) + 1)f(z) + (1− eβ(z))a(z).

Define u1(z) = eβ(z) + 1, v1(z) = (1− eβ(z))a(z). Then

f(z + c) = u1(z)f(z) + v1(z),
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f(z + 2c) = u1(z + c)u1(z)f(z) + u1(z + c)v1(z) + v1(z + c),

...

For k ∈ N+, using mathematical induction, one can deduce

f(z + kc) = uk(z)f(z) + vk(z),

where

uk(z) =

k−1∏
i=0

(eβ(z+ic) + 1), vk(z) =

k−1∑
i=0

v1(z + ic)

k−1∏
j=i+1

u1(z + jc).

In particular, if i > k − 2, then
∏k−1

j=i+1 u1(z + jc) = 1. For k = 0, we set

u0(z) = 1, v0(z) = 0. By the definition of P (f), we have

P (f) =

n∑
k=0

mk(z)f(z + kc)

=

n∑
k=0

mk(z)uk(z)f(z) +

n∑
k=0

mk(z)vk(z)

= Un(z)f(z) + Vn(z),(3.4)

where Un(z) =
∑n

k=0 mk(z)uk(z) and Vn(z) =
∑n

k=0 mk(z)vk(z).
Set w(z + ic) = β(z + ic)− β(z) for any i ∈ N, it can be deduced that

Un(z) = m0 +m1(1 + eβ(z)) +m2(1 + eβ(z))(1 + eβ(z+c)) + · · ·

+mn(1 + eβ(z))(1 + eβ(z+c)) · · · (1 + eβ(z+(n−1)c))

= m0 +m1(1 + eβ(z)) +m2(1 + eβ(z))(1 + ew(z+c)eβ(z)) + · · ·

+mn(1 + eβ(z))(1 + ew(z+c)eβ(z)) · · · (1 + ew(z+(n−1)c)eβ(z)).(3.5)

Noting that T (r, eβ(z)) = S(r, f), then lim sup
r→∞

log T (r,eβ(z))
r ≤ lim sup

r→∞

log T (r,f)
r =

0. It follows from Lemma 2.1 that for 0 ≤ i ≤ n− 1

m(r, ew(z+ic)) = m

(
r,
eβ(z+ic)

eβ(z)

)
= S(r, eβ(z)).

And since mk(z) (0 ≤ k ≤ n) are polynomials, there are T (r,mk) = S(r, eβ(z)).
Thus, (3.5) can be rewritten as follows:

(3.6) Un(z) = b0(z) + b1(z)e
β(z) + b2(z)e

2β(z) + · · ·+ bn(z)e
nβ(z),

where T (r, bj(z)) = S(r, eβ(z)) for all 0 ≤ j ≤ n. Here, b0(z) = m0+m1+ · · ·+
mn = 0 and bn(z) = mn(z)e

w(z+c) · · · ew(z+(n−1)c) ̸≡ 0.
Noting that a(z) ∈ S(f). By the definition of Vn(z) and (3.6), Lemma 2.1,

one knows

T (r, Vn(z)) + T (r, Un(z)) ≤ O(T (r, eβ(z))) + T (r, a(z)) + S(r, eβ(z))
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= S(r, f).(3.7)

Together with the first equation in (3.1) and (3.4), we have(
Un(z)− eα(z)

)
f(z) = a(z)

(
1− eα(z)

)
− Vn(z).

If Un(z)− eα(z) ̸≡ 0, it can be deduced from (3.7) and above equation that

T (r, f) ≤ T (r, Vn(z)) + T (r, Un(z)) + 2T (r, eα(z)) + S(r, f)

= 2T (r, eα(z)) + S(r, f) = S(r, f),

which is impossible. Hence, Un(z)− eα(z) ≡ 0, i.e.,

(3.8) b1(z)e
β(z) + b2(z)e

2β(z) + · · ·+ bn(z)e
nβ(z) ≡ eα(z).

Since β(z) is a non-constant entire function, then three cases are needed to
be discussed.

• T (r, eα) = S(r, eβ). Applying Lemma 2.2 to (3.8), it can be seen that
eα(z) ≡ 0 and bj(z) ≡ 0 (1 ≤ j ≤ n), a contradiction.

• T (r, eα) = O(T (r, eβ)) and T (r, eβ) = O(T (r, eα)). It follows from (3.8)
that T (r, eα) = nT (r, eβ) + S(r, eβ). This implies that S(r, eα) = S(r, eβ) and
α(z)− β(z) is not a constant for n ≥ 2. From (3.8), we have

b1(z) + b2(z)e
β(z) + · · ·+ bn(z)e

(n−1)β(z) ≡ eα(z)−β(z).

By Lemma 2.5, one has

(n− 1)T (r, eβ) = T (r, eα−β) + S(r, eβ)

≤ N(r, eα−β) +N(r,
1

eα−β
) +N(r,

1

eα−β − b1
) + S(r, eβ)

= N

(
r,

1

eβ(b2 + b3eβ + · · ·+ e(n−2)β)

)
+ S(r, eβ)

≤ (n− 2)T (r, eβ) + S(r, eβ),

which is impossible.
• T (r, eβ) = S(r, eα). It follows from T (r, bj(z)) = S(r, eβ) (1 ≤ j ≤ n) and

(3.8) that

T (r, eα) = T (r, b1e
β + b2e

2β + · · ·+ bne
nβ)

≤ nT (r, eβ) + S(r, eβ) = S(r, eα),

a contradiction can also be derived.
Hence, β(z) is a constant for z ∈ Cm. That is, there exists a non-zero

constant A = eβ satisfying ∆cf(z)−a(z)
f(z)−a(z) = A. The first conclusion of Theorem

1.3 holds.
Furthermore, we consider the case of P (f) = ∆n

c f(z) (n ≥ 2). By the
definition of ∆n

c f(z) and the fact that ∆cf(z) = Af(z) + (1−A)a(z), one has

∆2
cf = A∆cf + (1−A)∆ca(z) = A2f + (1−A)[a(z)A+∆ca(z)].
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By similar calculation, it is easy get for n ≥ 2

∆n
c f(z) = An−1∆cf(z) + (1−A)T ′

n(z)

= Anf(z) + (1−A)[An−1a(z) + T ′
n(z)]

= Anf(z) + (1−A)Tn(z),(3.9)

where T ′
n(z) =

∑n−1
i=1 An−1−i∆i

ca(z) and Tn(z) =
∑n−1

i=0 An−1−i∆i
ca(z).

By (3.9) and the first equality of (3.1), we get

(eα(z) −An)f(z) = (1−A)Tn(z)− (1− eα(z))a(z).

Owing to a(z) ∈ S(f) and T (r, eα) = S(r, f), one can deduce that eα(z) ≡ An.
In fact, if eα(z) −An ̸≡ 0, it follows from Lemma 2.1 and Lemma 2.3 that

T (r, f) = T

(
r,
(1−A)Tn(z)− (1− eα(z))a(z)

eα(z) −An

)
= S(r, f),

a contradiction. Then, by the first equation of (3.1) again and eα(z) ≡ An, one
has

∆n
c f(z) = f(z)eα − a(z)eα + a(z)

= Anf(z) + (1−An)a(z)

= An−1∆cf(z) + (1−An−1)a(z).(3.10)

Assume that ∆n
c f(z) ̸≡ ∆cf(z), which means An−1 ̸= 1. Together with the

first equality of (3.9) and (3.10), we have

(3.11) (1−A)

n−1∑
i=1

An−1−i∆i
ca(z) = (1−A)T ′

n(z) = (1−An−1)a(z).

Note here that a(z) is a non-constant polynomial on Cm. Using Lemma 2.3,
one knows that deg∆i

ca(z) < deg a(z) for i ≥ 1, which is a contradiction.
Hence ∆n

c f(z) ≡ ∆cf(z) and An−1 = 1. Next, we claim that A = 1.
Otherwise, from (3.11) we obtain

T ′
n(z) =

n−1∑
i=1

An−1−i∆i
ca(z) ≡ 0,

which contradicts the fact that a(z) is a non-constant polynomial. That we
complete the proof of Theorem 1.3.

4. The proof of Theorem 1.7

Assume to the contrary that P (f) ̸= ∆cP (f) for some z ∈ Cm. Obviously,
P (f) ̸≡ 0. By assumption, there also exist two entire functions α(z) and β(z)
such that

(4.1)
P (f)− d(z)

f(z)− b(z)
= eα(z),

∆cP (f)− d(z)

f(z)− b(z)
= eβ(z).
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It follows that

(4.2) P (f(z)) = d(z) + eα(z)(f(z)− b(z))

and

∆cP (f(z)) = d(z) + eβ(z)(f(z)− b(z))

for z, c ∈ Cm. Note here that b(z), d(z)( ̸≡ 0) ∈ S(f) are two periodic mero-
morphic functions with period c. By the definition of ∆cP (f(z)) and (4.2), one
has

d(z) + eα(z+c)(f(z + c)− b(z)) = P (f(z + c))

= ∆cP (f(z)) + P (f(z))

= 2d(z) + (eα(z) + eβ(z))(f(z)− b(z)).

Therefore,

(4.3) f(z + c)− b(z) = M(z)(f(z)− b(z)) + h(z),

where M(z) = (eα(z) + eβ(z))e−α(z+c) and h(z) = d(z)e−α(z+c).
Next we claim that T (r, eα) = S(r, f) and T (r, eβ) = S(r, f). To this

end, we set Ψ(z) := eα(z) − eβ(z)(̸≡ 0). Since b(z) ∈ S(f) with period c
and

∑n
k=0 mk(z) = 0, it follows from (4.1) and Lemma 2.1 that

T (r,Ψ) = m(r, eα(z) − eβ(z))

= m

(
r,
P (f)−∆cP (f)

f(z)− b(z)

)
≤ m

(
r,

P (f)

f(z)− b(z)

)
+m

(
r,

∆cP (f)

f(z)− b(z)

)
= m

(
r,

n∑
k=0

mk
f(z + kc)− b(z + kc)

f(z)− b(z)

)
+m

(
r,
∆cP (f)

P (f)
· P (f)

f(z)− b(z)

)
= S(r, f) + S(r, P (f)).

In addition, we know

T (r, P (f)) ≤
n∑

k=0

{T (r, f(z + kc)) + T (r,mk)} = O(T (r, f)).

This implies that T (r,Ψ) = S(r, f). Further, by Lemma 2.5, one has

T (r, eα) ≤ T

(
r,
eα

Ψ

)
+ T (r,Ψ)

≤ N

(
r,
eα

Ψ

)
+N

(
r,

Ψ

eα

)
+N

(
r,

1
eα

Ψ − 1

)
+ S

(
r,
eα

Ψ

)
+ S(r, f)

≤ N

(
r,

Ψ

eβ

)
+ S(r, f) + S(r, eα) = S(r, f) + S(r, eα).
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By the same argument, we can also deduce that T (r, eβ) ≤ S(r, f) + S(r, eβ).
It follows that T (r, eα) = S(r, f) and T (r, eβ) = S(r, f). This means that

(4.4) T (r,M(z)) = S(r, f), T (r, h(z)) = S(r, f).

In the following, we use the short notations for c ∈ Cm\{0} and f : Cm → P1

as follows:

f(z) := f0(z), f(z + c) := fc(z), . . . , f(z + kc) := fkc(z), k ∈ N.

It follows from (4.3) that

fc(z)− b(z) = M0(z)(f0(z)− b(z)) + h0(z),

f2c(z)− b(z) = Mc(z)(fc(z)− b(z)) + hc(z)

= Mc(z)M0(z)(f0(z)− b(z)) +Mc(z)h0(z) + hc(z),

f3c(z)− b(z) = M2c(z)(f2c(z)− b(z)) + h2c(z)

= M2c(z)Mc(z)M0(z)(f0(z)− b(z)) +M2c(z)Mc(z)h0(z)

+M2c(z)hc(z) + h2c(z),

...

By the same method, one can deduce for k ∈ N+

fkc(z)− b(z) =

(
k−1∏
i=0

Mic(z)

)
(f0(z)− b(z)) + h0(z)Mc(z) · · ·M(k−1)c(z)

+ hc(z)M2c(z) · · ·M(k−1)c(z) + · · ·+ h(k−1)c(z).(4.5)

For brevity, we set

γk =

k−1∏
i=0

Mic(z) = M0(z)Mc(z) · · ·M(k−1)c(z),

ζk = h0(z)Mc(z) · · ·M(k−1)c(z) + · · ·+ h(k−1)c(z).

Then fkc(z) − b(z) = γk(f0(z) − b(z)) + ζk. In particular, we define γ0 = 1,
ζ0 = 0. Using (4.4) and Lemma 2.1, one knows

(4.6) T (r, γk) = S(r, f), T (r, ζk) = S(r, f).

On the other hand, it follows from (1.2) and (4.5) that

P (f)− d(z) =

n∑
k=0

mk(z)(fkc(z)− b(z))− d(z)

= (f0(z)− b(z))

n∑
k=0

mkγk +

n∑
k=0

mkζk − d(z).(4.7)

Noting that f(z)−b(z) and P (f)−d(z) share 0 CM, which implies that the zeros
of f(z)− b(z) must be the zeros of P (f)− d(z)− (f0(z)− b(z))

∑n
k=0 mk(z)γk.
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If
∑n

k=0 mkζk − d(z) ̸≡ 0, by (4.6) and (4.7), we get

N

(
r,

1

f − b

)
≤ N

(
r,

1∑n
k=0 mkζk − d

)
= S(r, f).

In addition, owing to d(z) ̸≡ 0, by means of (4.1) and Lemma 2.1 we always
have

m

(
r,

1

f − b

)
≤ m

(
r,

d

f − b

)
+m

(
r,
1

d

)
≤ m

(
r,

P (f)

f − b

)
+m (r, eα) + S(r, f) = S(r, f).

This implies that T (r, f) = T (r, 1
f−b )+O(1) = S(r, f), which is impossible. So∑n

k=0 mkζk − d(z) ≡ 0. It follows from (4.7) that

(4.8)

n∑
k=0

mk(z)γk =
P (f)− d(z)

f(z)− b(z)
= eα(z), n ≥ 2.

Let ω(z) = β(z) − α(z). Then T (r, eω) ≤ T (r, eα) + T (r, eβ) = S(r, f) and

lim sup
r→∞

log T (r,eω)
r = 0. Noting that for all 0 ≤ i ≤ k − 1

(4.9) Mic(z) = eαic(z)−α(i+1)c(z)[1 + eω(z) · eωic(z)−ω(z)] = ηi + θie
ω(z),

where ηi = eαic(z)−α(i+1)c(z) and θi = ηie
ωic(z)−ω(z). It follows from Lemma 2.1

that

T (r, ηi) = m(r, ηi) = S(r, eα),

T (r, θi) = m(r, θi) ≤ S(r, eα) + S(r, eω).(4.10)

Further, by the definition of γk and (4.8), we have

(4.11) b0(z)− eα + b1(z)e
ω + b2(z)e

2ω + · · ·+ bn(z)e
nω = 0,

where bj(z) are functions in mk, ηi, θi for all 0 ≤ j ≤ n. In particular, one
can know b0(z) = m0 + m1η0 + m2η0η1 + · · · + mnη0η1 · · · ηn−1 and bn(z) =
mnθ0θ1 · · · θn−1 ̸≡ 0.

Owing to ω(z) = β(z) − α(z) ̸≡ 0, then eω(z) and eα(z) must satisfy one
of the following: (1) eω(z) and eα(z) are constants; (2) eω(z) and eα(z) are
non-constant entire functions; (3) either eω(z) or eα(z) is a non-constant entire
function. From the perspective of characteristic function, the above three cases

will lead to T (r, eα) = S(r, eω), T (r,eα)
T (r,eω) → O(1)(> 0) or T (r, eω) = S(r, eα) as

r → ∞. Below we discuss these three cases separately.
• Assume T (r, eα) = S(r, eω). Since eω(z) is a transcendental entire function

and mk(z) (0 ≤ k ≤ n) are polynomials, then T (r,mk) = S(r, eω). By the
definition of bj(z), one can deduce that T (r, bj) = S(r, eω) for all 0 ≤ j ≤ n.

Applying Lemma 2.2 and (4.11), we obtain b0(z)−eα(z) ≡ 0 and bj(z) ≡ 0 (1 ≤
j ≤ n), which contradict the fact that bn(z) ̸≡ 0.
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• T (r, eα) = O(T (r, eω)). Noting that P (f) ̸≡ ∆cP (f). If eα(z) and eω(z) are
constants for z ∈ Cm, then there exist two distinct constants C1, C2 satisfying

eα = C1 and eω = eβ

eα = C2

C1
. In view of (4.3), one can deduce

(4.12) Mic(z) = M = 1 +
C2

C1
, hic(z) = h =

d(z)

C1

for all 0 ≤ i ≤ k − 1. By the definitions of γk and ζk for 0 ≤ k ≤ n

γk = Mk = (1 + C2/C1)
k, ζk = h(Mk−1 + · · ·+M + 1) =

h(1−Mk)

1−M
.

Since d(z) ̸≡ 0 and
∑n

k=0 mk(z)ζk ≡ d(z), it follows from (4.8) and (4.12) that

C1 =

n∑
k=0

mk(z)γk =

n∑
k=0

mk(z)M
k,

C2 =
C2

d
· d =

C2

d

n∑
k=0

mk(z)
h(1−Mk)

1−M
=

n∑
k=0

mk(z)M
k,

which is impossible.
If eα(z) and eω(z) are non-constant entire functions, then S(r, eα) = S(r, eω).

It follows from (4.10) and (4.11) that T (r, bj) = S(r, eω) for 0 ≤ j ≤ n. Next,
we consider two conditions for b0(z) ̸≡ 0 and b0(z) ≡ 0. Assume that b0(z) ̸≡ 0.
By (4.11) and Lemma 2.5, we have

nT (r, eω) = T (r, eα) + S(r, eα)

≤ N(r, eα) +N

(
r,

1

eα

)
+N

(
r,

1

eα − b0

)
+ S(r, eα)

= N

(
r,

1

eω(b1 + b2eω + · · ·+ bne(n−1)ω)

)
+ S(r, eω)

≤ (n− 1)T (r, eω) + S(r, eω),

which is a contradiction. Suppose that b0(z) ≡ 0. Then we can rewritten (4.11)
as follows:

b1 + b2e
ω + · · ·+ bne

(n−1)ω = eα−ω, n ≥ 2.

If α(z) − ω(z) is a constant, then applying Lemma 2.2, one can obtain
b1 ≡ eα−ω and bj ≡ 0 for 2 ≤ j ≤ n, which yields a contradiction for bn(z) ̸≡ 0.
Now let’s consider that α(z)− ω(z) is not a constant. By Lemma 2.5, one has

(n− 1)T (r, eω) = T (r, eα−ω) + S(r, eω)

≤ N(r, eα−ω) +N

(
r,

1

eα−ω

)
+N

(
r,

1

eα−ω − b1

)
+ S(r, eω)

= N

(
r,

1

eω(b2 + b3eω + · · ·+ e(n−2)ω

)
+ S(r, eω)

≤ (n− 2)T (r, eω) + S(r, eω),

which is impossible.
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• T (r, eω) = S(r, eα). It follows from (4.9) that for 0 ≤ i ≤ k − 1

T (r,Mic(z)) = T (r, ηi + θie
ω) = S(r, eα).

Using (4.8) and the definition of γk, we have

T (r, eα) ≤
n∑

k=0

(T (r,mk) + T (r, γk)) = S(r, eα),

a contradiction can also be derived. This completes the proof of Theorem 1.7.
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