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CUP PRODUCT ON RELATIVE BOUNDED COHOMOLOGY

HeeSook Park

Abstract. In this paper, we define cup product on relative bounded

cohomology, and study its basic properties. Then, by extending it to

a more generalized formula, we prove that all cup products of bounded
cohomology classes of an amalgamated free product G1 ∗A G2 are zero

for every positive degree, assuming that free factors Gi are amenable and
amalgamated subgroup A is normal in both of them. As its consequences,

we show that all cup products of bounded cohomology classes of the

groups Z ∗Z and Zn ∗Zd
Zm, where d is the greatest common divisor of n

and m, are zero for every positive degree.

1. Introduction

The theory of bounded cohomology has attracted considerable attention with
many applications ([3, 4]). However, computing bounded cohomology groups
seems more complicated, and therefore inquiring into various methods of its
computation would be interesting. For example, let Fm be a free group with
rank m ≥ 2. As it is well known, its ordinary cohomology Hn(Fm) = 0 for

every n > 1. On the other hand, its bounded cohomology groups Ĥn(Fm)
with real coefficients are computed only up to n = 3 and remain unknown for

n ≥ 4. In particular, Ĥ2(Fm) and Ĥ3(Fm) are known as infinite dimensional

vector spaces over R ([3]). In [6], it is proved that α ∪ β ∈ Ĥ4(Fm) is zero

for α, β ∈ Ĥ2(Fm) if they are represented by quasicharacters. A function
f : G → R for a group G is called a quasicharacter if there is a constant C ≥ 0
such that |f(x)+f(y)−f(xy)| ≤ C for all x, y ∈ G. Meanwhile, in the ordinary
cohomology, the following theorem is proved ([1]):

Theorem 1.1. Suppose X = U ∪V , where U and V are open and acyclic sets.
Then α ∪ β = 0 for all cohomology classes α, β ∈ H∗(X).

The proof of this theorem is based on a generalized cup product

H∗(X,U)×H∗(X,V )
∪−→ H∗(X,U ∪ V ).
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Motivated by this, the main purpose of this paper is to establish a more gen-
eralized cup product on the relative bounded cohomology of groups and, as a
consequence of it, to compute cup product of bounded cohomology classes of
amalgamated free products with amenable free factors.

We first review the definitions of the both absolute and relative bounded
cohomology of groups briefly following [3] and [8].

Throughout this paper, all groups are considered discrete and G denotes a
group.

The ordinary cohomology group H∗(G) of G with real coefficients R is given
by the cohomology of the following cochain complex C∗(G):

0 → R d0=0−−−→ C1(G)
d1−→ C2(G)

d2−→ · · · → Cn(G)
dn−→ Cn+1(G) → · · · ,

where Cn(G) is a space of all real valued functions f : Gn = G× · · · ×G︸ ︷︷ ︸
n

→ R

and each boundary operator dn is given by the formula

dn(f)(g1, g2, . . . , gn+1)

= f(g2, . . . , gn+1) +

n∑
i=1

(−1)if(g1, . . . , gigi+1, . . . , gn+1)

+ (−1)n+1f(g1, . . . , gn).(1.1)

We consider bounded cochains groups Bn(G) = {f ∈ Cn(G) | ∥f∥ < ∞}, where
∥f∥ = sup{ |f(x)| |x ∈ Gn}. By the same formula for each dn as in (1.1), we
have a complex B∗(G):

(1.2) 0 → R d0=0−−−→ B1(G)
d1−→ B2(G)

d2−→ · · ·

of bounded cochain groups.

Definition 1.2. The nth cohomology of the complex (1.2) is called the nth

bounded cohomology of G and is denoted by Ĥn(G).

The inclusion homomorphism B∗(G) ↪→ C∗(G) induces a homomorphism

Ĥ∗(G) → H∗(G) which is in general neither injective nor surjective.
We refer the abstract theory of bounded cohomology to [3], [4], and [7].

Remark 1.3. In [7], it is proved that the bounded cohomology groups of an
amenable group are zero for every positive degree. Recall that a group G is
amenale if there exists a right invariant mean on B(G). For example, abelian
groups, finite groups, and also subgroups of an amenable group are amenable.

Similar to Ĥ∗(G), the bounded cohomology Ĥ∗(X) of a topological space
X is defined as the cohomology of the bounded cochain complex B∗(X):

0 → B0(X)
d0−→ B1(X)

d1−→ B2(X)
d2−→ · · · ,
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where Bn(X) consists of all functions f : Sn(X) → R which is bounded with
respect to the sup norm and Sn(X) is the set of n-dimensional singular simplices
in X. For details, we refer to [7].

As one of the important properties in the theory of bounded cohomology,
the following theorem is proved in [7]:

Theorem 1.4. Let X be a connected countable cellular space. Then Ĥ∗(X) is

canonically isomorphic with Ĥ∗(π1X).

Now we introduce the basic definition of relative bounded cohomology and
refer to [8] for more details. Based on Theorem 1.4, we define relative bounded
cohomology in more general aspect: by considering a continuous map φ′ : Y →
X of spaces and a homomorphism φ : K → G of groups instead of subspaces
and subgroups.

Let φ : K → G be a homomorphism of groups. Then there is a cochain map
of homomorphisms φn : Bn(G) → Bn(K) for n ≥ 1 defined by the formula:
For α ∈ Bn(G) and (a1, a2, . . . , an) ∈ Gn

φnα(a1, a2, . . . , an) = α (φ(a1), φ(a2), . . . , φ(an)) , n ≥ 1.

The relative bounded cochain groups B∗(K
φ−→ G) of φ is defined by

(1.3) Bn(K
φ−→ G) = Bn(G)⊕Bn−1(K)

and a norm ∥ · ∥ on Bn(K
φ−→ G) by ∥(αn, γn−1)∥ = max{∥αn∥, ∥γn−1∥}. It is

clear that this norm is bounded.
Also, we define a boundary operator for n ≥ 1

dn : Bn(K
φ−→ G) → Bn+1(K

φ−→ G)

by the formula: For (αn, γn−1) ∈ Bn(K
φ−→ G) = Bn(G)⊕Bn−1(K)

(1.4) dn(αn, γn−1) = (∂nαn, −φnαn − δn−1γn−1) ,

where δ∗ and ∂∗ are boundary operators of B∗(K) and B∗(G), respectively.

Then we have the relative bounded cochain complex B∗(K
φ−→ G):

(1.5) 0 → R d0−→ B1(K
φ−→ G)

d1−→ B2(K
φ−→ G)

d2−→ · · · ,
where d0(r) = (0,−r) for r ∈ R.
Definition 1.5. The nth cohomology of the complex (1.5) is called the nth

relative bounded cohomology of φ. We denote it by Ĥn(K
φ−→ G).

It is easy to compute that

(1.6) Ĥ0(K
φ−→ G) = 0 and Ĥ1(K

φ−→ G) = 0.

Remark 1.6. Similar to the case of groups, for a continuous map φ′ : Y → X

of topological spaces, the relative bounded cohomology Ĥ∗(Y
φ′

−→ X) of φ′ is
defined by the cohomology of the complex

0 → B0(Y
φ′

−→ X)
d0−→ B1(Y

φ′

−→ X)
d1−→ B2(Y

φ′

−→ X)
d2−→ · · · ,
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where Bn(Y
φ′

−→ X) = Bn(X)⊕Bn−1(Y ) and the each boundary operator dn
is defined by the same formula as (1.4).

In [8], the following theorem is proved:

Theorem 1.7. Let φ′ : Y → X be a continuous map of topological spaces.

Then Ĥ∗(Y
φ′

−→ X) is (isometrically) isomorphic to Ĥ∗(π1Y
φ′

♯−→ π1X).

By Theorem 1.7, we can study relative bounded cohomology of spaces and
groups simultaneously as the absolute case shown in Theorem 1.4.

Recall that the following basic homological algebraic properties hold.

Remark 1.8. Let φ : K → G be a homomorphism of groups. By the natural
injection ιn and projection πn, there is an exact sequence

0 → Bn−1(K)
ιn−→ Bn(K

φ−→ G) = Bn(G)⊕Bn−1(K)
πn−−→ Bn(G) → 0

and it induces a long exact sequence

→ Ĥn−1(K)
ι∗−→ Ĥn(K

φ−→ G)
π∗

−→ Ĥn(G)
δ̃∗−→ Ĥn(K)

ι∗−→ Ĥn+1(K
φ−→ G) → .

Notice that, for [ζ] ∈ Ĥn(K) it is clear that

ι∗([ζ]) = [(0, ζ)] ∈ Ĥn+1(K
φ−→ G).

We describe the contents of this paper. In the next section, we define cup

product on the relative bounded cohomology Ĥ∗(K
φ−→ G) and study its prop-

erties. In Section 3, after establishing a more generalized relative cup prod-
uct from the point of view of Theorem 1.7, we prove that all cup products
of bounded cohomology classes of an amalgamated product G1 ∗A G2 with
amenable free factors Gi are zero for all positive degrees, assuming that the
amalgamated subgroup A is normal in both Gi. Then, as its applications, we
show that all cup products of bounded cohomology classes of Z ∗ Z and of
Zn ∗Zd

Zm, where d is the greatest common divisor of n and m, are zero for all
positive degrees.

In the rest of this paper, we consider only the algebraic structure of bounded
cohomology as a vector spaces over R.

2. Cup product on relative bounded cohomology

Throughout this section, φ : K → G denotes a homomorphism of groups
and φn : Bn(G) → Bn(K) its induced homomorphism for every n ≥ 1. Also,
for simplicity, we denote all boundary operators by d∗ and omit all subscripts
if there is no confusion.

For α ∈ Cp(G) and β ∈ Cq(G), the cup product α ∪ β ∈ Cp+q(G) is the
cochain whose value on Gp+q is given by the formula ([2, 5])

(2.1) (αp ∪ βq)(g1, . . . , gp, gp+1, . . . , gp+q) = αp(g1, . . . , gp)βq(gp+1, . . . , gp+q).
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For α, β ∈ B∗(G) ⊆ C∗(G), notice that ∥α ∪ β∥ ≤ ∥α∥ · ∥β∥ < ∞ and so
α ∪ β ∈ B∗(G). Hence there is a cup product

∪ : Bp(G)×Bq(G) → Bp+q(G).

Also, as it is shown in [2] and [5], the boundary operator d∗ on B∗(G) holds
the equation

(2.2) dp+q(αp ∪ βq) = dpαp ∪ βq + (−1)pαp ∪ dqβq for every p, q ≥ 0.

It follows that there is an induced cup product Ĥp(G) × Ĥq(G)
∪−→ Ĥp+q(G).

Moreover, for [α], [β] ∈ Ĥ∗(G), we have [α] ∪ [β] = [α ∪ β].
By the same method as shown in [2] for the ordinary cohomology, cup prod-

ucts on Ĥ∗(G) are bilinear, associative, distributive, anti-commutative, and
natural.

Remark 2.1. The external direct sum
⊕

n≥0 Ĥ
n(G) forms an additive group.

Also, there is an identity element [1] ∈ Ĥ0(G) = R. Thus this additive group
forms a graded anti-commutative ring with the identity under the cup product
operation.

Now we look into the cup product on the relative bounded cochain groups

B∗(K
φ−→ G). Recall that Bn(K

φ−→ G) = Bn(G)⊕Bn−1(K) for every n ≥ 0.

Definition 2.2. We define the relative cup product

∪ : Bp(K
φ−→ G)×Bq(K

φ−→ G) → Bp+q(K
φ−→ G)

by the following equation

(2.2.1) (α, γ) ∪ (β, ρ) =

(
α ∪ β,

(−1)p

2
φpα ∪ ρ+

1

2
γ ∪ φqβ

)
.

Proposition 2.3. The cup product on B∗(K
φ−→ G) is bilinear, distributive,

and anti-commutative. Also, for A ∈ Bp(K
φ−→ G) and B ∈ Bq(K

φ−→ G),

d (A ∪B) = dA ∪B + (−1)pA ∪ dB.

Proof. Recall that the cup products on bounded cochain groups are bilinear and
anti-commutative from Remark 2.1. Using these facts, it is easy to check the

bilinear and anti-commutative properties of the cup product on B∗(K
φ−→ G).

Let A = (α, γ) ∈ Bp(K
φ−→ G) and B = (β, ρ) ∈ Bq(K

φ−→ G). By the
formulas (1.4) and (2.2.1), we have

(2.3.1) d(A ∪B) = d

(
α ∪ β,

(−1)p

2
φpα ∪ ρ+

1

2
γ ∪ φqβ

)
=

(
d(α ∪ β), C

)
,

where

C = −φp+q(α ∪ β)− (−1)p

2
d (φpα ∪ ρ)− 1

2
d (γ ∪ φqβ) .

On the other hand,

dA ∪B + (−1)pA ∪ dB = d(α, γ) ∪ (β, ρ) + (−1)p(α, γ) ∪ d(β, ρ)
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= (dα,−φpα− dγ) ∪ (β, ρ) + (−1)p(α, γ) ∪ (dβ, −φqβ − dρ)

=

(
dα ∪ β,

1

2
C1

)
+

(
(−1)pα ∪ dβ,

(−1)p

2
C2

)
=

(
d(α ∪ β),

1

2
(C1 + (−1)pC2)

)
,(2.3.2)

where {
C1 = (−1)p+1φp+1dα ∪ ρ+ (−φpα− dγ) ∪ φqβ;

C2 = (−1)pφpα ∪ (−φqβ − dρ) + γ ∪ φq+1dβ.

From (2.3.1) and (2.3.2), it is enough to show that C1+(−1)pC2 = 2C. As the
cup products on B∗(G) and B∗(K) are bilinear by Remark 2.1,

C1 + (−1)pC2

= − (−1)pφp+1dα ∪ ρ− φpα ∪ φqβ − dγ ∪ φqβ

− φpα ∪ φqβ − φpα ∪ dρ+ (−1)pγ ∪ φq+1dβ

= − 2φp+q(α ∪ β)− (−1)pd (φpα ∪ ρ)− d (γ ∪ φqβ) = 2C. □

Theorem 2.4. The cup product on B∗(K
φ−→ G) induces an operation

∪ : Ĥp(K
φ−→ G)× Ĥq(K

φ−→ G) → Ĥp+q(K
φ−→ G)

that is bilinear, distributive, and anti-commutative.

Proof. By the same method shown in [1] and [5], it is easy to check the relative
bounded cohomology class of cup product depends only on cohomology classes.
So, it follows from Proposition 2.3. □

Notice that the cup product on B∗(K
φ−→ G) is not associative.

Proposition 2.5. The cup product on Ĥ∗(K
φ−→ G) is associative.

Proof. Let [A], [B], [C] ∈ Ĥ∗(K
φ−→ G) be represented, respectively, by the

cocycles A = (α, γ) ∈ Bp(K
φ−→ G), B = (β, ρ) ∈ Bq(K

φ−→ G), and C =

(λ, ζ) ∈ Br(K
φ−→ G).

From Theorem 2.4, it is enough to show that the cocycles (A ∪B) ∪ C and
A ∪ (B ∪ C) differ by a coboundary. Notice that, by Definition 2.2,
(A ∪B) ∪ C =

(
α ∪ β,

(−1)p

2
φpα ∪ ρ+

1

2
γ ∪ φqβ

)
∪ (λ, ζ) = ((α ∪ β) ∪ λ, X);

A ∪ (B ∪ C) = (α, γ) ∪
(
β ∪ λ,

(−1)q

2
φqβ ∪ ζ +

1

2
ρ ∪ φrλ

)
= (α ∪ (β ∪ λ), X ′),

where{
X = (−1)p+q

2 (φpα ∪ φqβ) ∪ ζ + (−1)p

4 (φpα ∪ ρ) ∪ φrλ+ 1
4 (γ ∪ φqβ) ∪ φrλ;

X ′ = (−1)p+q

4 φpα ∪ (φqβ ∪ ζ) + (−1)p

4 φpα ∪ (ρ ∪ φrλ) +
1
2γ ∪ (φqβ ∪ φrλ).
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As the associative law holds on both B∗(K) and B∗(G) by Remark 2.1,

(A ∪B) ∪ C −A ∪ (B ∪ C) = (0, X −X ′).

We compute X −X ′. Since dA = dB = dC = 0, by the formula (1.4) we have
the following equations:

(2.5.1) dγ = −φpα; dρ = −φqβ; dζ = −φrλ.

Then, by (2.5.1) and the anti-commutative property in Remark 2.1

X −X ′ =
(−1)p+q

4
φα ∪ φβ ∪ ζ − 1

4
γ ∪ φβ ∪ φλ

=
(−1)p+q(−1)pq

4
dρ ∪ dγ ∪ ζ − (−1)(p−1)q

4
dρ ∪ γ ∪ dζ

=
(−1)p+q+pq

4
d (ρ ∪ d(γ ∪ ζ)) .

This shows that

(A ∪B) ∪ C −A ∪ (B ∪ C) =
(−1)p+q+pq

4
d
(
0, −ρ ∪ d(γ ∪ ζ)

)
and so by Theorem 2.4

([A] ∪ [B]) ∪ [C] = [(A ∪B) ∪ C] = [A ∪ (B ∪ C)] = [A] ∪ ([B] ∪ [C]) . □

Remark 2.6. As Ĥ0(K
φ−→ G) = 0 shown in (1.6), the external direct sum⊕

n≥0 Ĥ
n(K

φ−→ G) forms an anti-commutative ring without the identity under
relative cup product by Theorem 2.4 and Proposition 2.5.

Definition 2.7. We define the following cup product operations

Bp(K
φ−→ G)×Bq(G)

∪−→ Bp+q(K
φ−→ G) and Bp(K)×Bq(G)

∪−→ Bp+q(K),

respectively, by the formulas: For β ∈ Bq(G),

(α, γ) ∪ β = (α ∪ β, γ ∪ φqβ) and η ∪ β = η ∪ φqβ,

where (α, γ) ∈ Bp(K
φ−→ G), and η ∈ Bp(K).

Now, we show the cup products commute in the sequence in Remark 1.8.

Proposition 2.8. Let [B] ∈ Ĥq(G). Then the following diagram commutes:

Ĥp(K
φ−→ G) Ĥp(G) Ĥp(K) Ĥp+1(K

φ−→ G)

Ĥp+q(K
φ−→ G) Ĥp+q(G) Ĥp+q(K) Ĥp+q+1(K

φ−→ G).

π∗ φ∗ ι∗

π∗ φ∗ ι∗

∪[B] ∪[B] ∪φ∗[B] ∪[B]
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Proof. It is clear that the second rectangle is commutative as the cup product

is natural. Let (α, γ) ∈ Bp(K
φ−→ G) be a cocycle and [B] be represented by a

cocycle β ∈ Bq(G). By Definition 2.7,

πp+q((α, γ) ∪ β) = α ∪ β = πp(α, γ) ∪ β

and

ιp+q(γ) ∪ β = (0, γ) ∪ β = (0, γ ∪ φqβ) = ιp+1+q(γ ∪ φqβ).

Hence the first and the third diagrams are also commutative. □

3. Generalized cup product on relative bounded cohomology and
its application

As shown in [5], for a CW-complex X and its subcomplexes X1 and X2,
there is a more generalized relative cup product

Hp(X,X1)×Hq(X,X2)
∪−→ Hp+q(X,X1 ∪X2).

By imitating this, we define a more generalized relative cup product on
bounded cohomology from the point of view of Theorem 1.7. For this, we
recollect the amalgamated free product for the fundamental group of X1 ∪X2.

Lemma 3.1. Any amalgamation diagram G = G1∗AG2 with ι1 and ι2 injective
can be realized by a diagram of K(π1, 1) complexes Y1 and Y2:

A = π1(Y1 ∩ Y2) G1 = π1Y1

G2 = π1Y2 G1 ∗A G2 = π1(Y1 ∪ Y2),

ι1

ι2 ι′1

ι′2

where Y1 ∩ Y2 is connected and nonempty.

Proof. The proof is referred to Theorem 7.2 and Theorem 7.3 in [2]. □

Remark 3.2. We consider an amalgamated free product G1∗AG2 with injective
homomorphisms ιi : A → Gi for both i = 1, 2. Then we can regard A as a
subgroup of both factors G1 and G2. Let A be normal in both G1 and G2.
Recall that there is the natural surjective homomorphism

G1 ∗A G2
θ′

−→ G1/A ∗G2/A.

So the composition of homomorphisms G1 ∗A G2
θ′

−→ G1/A ∗ G2/A → Gi/A
induces a homomorphism

θi,m : Bm(Gi/A) → Bm(G1 ∗A G2), m ≥ 0 and i = 1, 2.

In the rest of this section, when we say G = G1 ∗A G2, we assume A is a
subgroup of Gi via injective homomorphisms ιi : A ↪→ Gi for i = 1, 2.
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Lemma 3.3. Let G = G1 ∗A G2 and A be normal in both Gi. Suppose A is
amenable. Then, for every m ≥ 0 there is a homomorphism

(3.3.1) hi,m : Bm(Gi) → Bm(G1 ∗A G2).

Proof. Since A is amenable, as shown in [7] there is a homomorphism

π̃i,m : Bm(Gi) → Bm(Gi/A)

such that the composition Bm(Gi/A) → Bm(Gi)
π̃i,m−−−→ Bm(Gi/A) is an iden-

tity. Then we set hi,m = θi,m ◦ π̃i,m, where θi,m is in Remark 3.2 □

Theorem 3.4. Let G = G1 ∗A G2 and Γ be a group equipped with homomor-
phisms fi : Gi → Γ such that f1ι1 = f2ι2, where ιi : A ↪→ Gi are injective
homomorphisms for i = 1, 2. Let A be amenable and normal in both Gi. Then
there is a cup product

(3.4.1) Ĥp(G1
f1−→ Γ)× Ĥq(G2

f2−→ Γ)
∪−→ Ĥp+q(G1 ∗A G2

θ̃−→ Γ)

that is bilinear and associative.

Proof. First, we define a cup product

(3.4.2) Bp(G1
f1−→ Γ)×Bq(G2

f2−→ Γ)
∪−→ Bp+q(G1 ∗A G2

θ̃−→ Γ).

Let (α, γ) ∈ Bp(Γ)⊕Bp−1(G1) and (β, ρ) ∈ Bq(Γ)⊕Bq−1(G2). It is clear that
α∪ β ∈ Bn(Γ), where n = p+ q. Notice that there is a unique homomorphism

θ̃ : G → Γ such that θ̃ ◦ ι′i = fi, where ι
′
i is a natural embedding Gi → G. Then

there is an induced homomorphism θ̃m : Bm(Γ) → Bm(G1 ∗A G2). Then

θ̃pα ∪ h2,q−1ρ ∈ Bn−1(G1 ∗A G2) and h1,p−1γ ∪ θ̃qβ ∈ Bn−1(G1 ∗A G2),

where hi,m : Bm(Gi) → Bm(G1 ∗A G2) is defined in Lemma 3.3. Thus, from
Definition 2.2, there is a cup product in (3.4.2) defined by

(α, γ) ∪ (β, ρ) =

(
α ∪ β,

(−1)p

2
θ̃pα ∪ h2,q−1ρ+

1

2
h1,p−1γ ∪ θ̃qβ

)
.

Hence, by Proposition 2.3, it induces a cup product in (3.4.1). The bilinear
and associative properties follow from Theorem 2.4 and Proposition 2.5. □

There is a topological space version of Theorem 3.4.

Corollary 3.5. Let Y be a CW-complex which is the union of two connected
subcomplexes Y1 and Y2 whose intersection Z = Y1 ∩ Y2 is connected and non-
empty. Suppose π1Z is amenable and normal in both π1Y1 and π1Y2. Then
there is a cup product on the relative bounded cochains

Ĥp(Y1 ↪→ X)× Ĥq(Y2 ↪→ X)
∪−→ Ĥp+q(Y1 ∪ Y2 → X).

Proof. Recall that π1(Y1∪Y2) = π1Y1∗π1Zπ1Y2 by Lemma 3.3. Then, it follows
from Lemma 3.1 and Theorem 1.7. □
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Theorem 3.6. Let G = G1∗AG2 and A be normal in both G1 and G2. Suppose

G1 and G2 are amenable. Then, for α, β ∈ Ĥ∗(G1 ∗A G2), their cup product
α ∪ β is zero for all positive degrees.

Proof. For p, q ≥ 0 with p + q > 0, let α ∈ Ĥp(G) and β ∈ Ĥq(G). From
Remark 1.8, for each i = 1, 2 there is an exact sequence

→ Ĥm−1(Gi) → Ĥm(Gi
ι′i−→ G) → Ĥm(G) → Ĥm(Gi) → .

Since bounded cohomology groups of an amenable group are zero for all positive

degrees by Remark 1.3, Ĥ∗(Gi
ι′i−→ G) and Ĥ∗(G) are isomorphic. Hence

there are the relative bounded cohomology classes α̃ ∈ Ĥp(G1
ι′1−→ G) and

β̃ ∈ Ĥq(G2
ι′2−→ G) such that α̃ and β̃, respectively, map to α and β. Since

subgroups of an amenable group are amenable, A is also amenable. So from
Corollary 3.4, we have a commutative diagram:

Ĥp(G1
ι′1−→ G)× Ĥq(G2

ι′2−→ G) Ĥp+q(G1 ∗A G2
id−→ G) = 0

Ĥp(G)× Ĥq(G) Ĥp+q(G).

∪

∼=

∪

As α̃ ∪ β̃ ∈ Ĥp(G1 ∗A G2 → G) = 0, we have α ∪ β = 0. □

Corollary 3.7. Let G = Z∗Z. Then α∪β = 0 for all α, β ∈ Ĥ∗(G) of positive
degree.

Proof. Notice that a free group Z ∗ Z is a free product with the trivial group
amalgamated. Also, an abelian group Z is amenable. Hence it follows from
Theorem 3.6. □

Corollary 3.8. Let G = Zn ∗Zd
Zm, where d is the greatest common divisor of

n and m. Then α ∪ β = 0 for all α, β ∈ Ĥ∗(G) of positive degree.

Proof. Let n = ds and m = dt for positive integers s, t. Recall that

Zn ∗Zd
Zm =

〈
a, b | an = bm = 1, as = bt

〉
.

Then Zd
∼=

〈
as| ads

〉
and Zd

∼=
〈
bt| bdt

〉
. As we know it, we can take injective

homomorphisms ι1 : Zd → Zn by ι1(x) = xs and similarly ι2 : Zd → Zm by
ι2(y) = yt. Notice that Zn and Zm are amenable. Also, Zd can be regarded as
a normal subgroup of Zn and Zm. Then it follows from Theorem 3.6. □
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