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COMPUTATIONS AND CONSERVATIVENESS OF TRACES

OF ONE-DIMENSIONAL DIFFUSIONS

Ali BenAmor and Rafed Moussa

Abstract. We compute explicitly traces of one-dimensional diffusion

processes. The obtained trace forms can be regarded as Dirichlet forms
on graphs. Then we discuss conditions ensuring the trace forms to be con-

servative. Finally, the obtained results are applied to the Bessel process
of order ν.

1. Introduction

Throughout this paper we are concerned with the computation and conserva-
tiveness of traces of one-dimensional diffusions generated by the Feller operator
d

dm
d
ds . We recall the known fact [3] that such diffusions on an open interval

I are characterized by a scale function s, i.e., a continuous strictly increasing
function on I and a measure m. Moreover, they are related in an appropriate
way to Dirichlet forms with domains in L2(I,m) defined by

E(s)[u] :=

∫
I

(
du

ds
(x))2 ds(x)

on their domains dom E(s). Further details about the form are given in the
next section. Given a diffusion of the above type, a positive measure µ with
support V ⊂ I and a linear operator J : dom E(s) ∩ L2(V, µ) → L2(V, µ) we
shall first compute the trace of E(s) with respect to the measure µ by means
of the method elaborated in [1]. We shall demonstrate in particular that the
obtained trace form in L2(V, µ) is in fact a graph Dirichlet form if the measure
µ is discrete.

Once the computation has been performed we shall turn our attention to
study the conservativeness property, i.e., conservation of total mass, for the
trace Dirichlet form. We shall show that, for fixed E(s), conservativeness de-
pends strongly on the measure µ and its support V .
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780 A. BENAMOR AND R. MOUSSA

The motivation rests on two facts: first to put the particular case for the
Bessel’s process analyzed in [2] in a general framework. Second, the signifi-
cance of the conservativeness property both in analysis and in probability. In
fact in analysis conservativeness is equivalent to the existence and uniqueness
of a bounded stationnary solution of the heat equation. Whereas in probabil-
ity conservativeness implies that, almost surely, the related stochastic process
starting at any point will have an infinite lifetime.

At this stage we mention that there is a huge literature concerned with
conservative Dirichlet forms. Regarding the subject we refer the reader to
[6–8,11,14,15].

The paper is organized as follows. In Section 2 we introduce some necessary
definitions and notations concerning Dirichlet forms related to one-dimensional
diffusions as well as Feller’s classification of boundary points. Section 3 is de-
voted to the computation of the trace of the considered Dirichlet forms on
discrete sets as well as on composites of continuous and discrete sets. In Sec-
tion 4 we study the conservativeness property for the traces on discrete sets.
In this respect we shall give necessary and sufficient conditions ensuring the
trace form to be conservative. Thereby we extend [2, Theorem 3.7] to this gen-
eral framework. The obtained theoretical results will be applied to the Bessel
process of order ν, in the last section.

2. Framework and basic notations

We start by introducing some notations.
Let I := (r1, r2), where −∞ ≤ r1 < r2 ≤ ∞. Let us consider a continuous

strictly increasing function s : I → R. It is well known that s is almost
everywhere differentiable.

Furthermore the scale function s can be also considered as a scaling measure
on Borel subsets of R which we still denote by s, setting

s([α, β]) = s(β)− s(α) =

∫ β

α

ds(x), ∀α, β ∈ R, α < β.

Let us designate by ACloc(I) the space of locally absolutely continuous func-
tions on I and by ACs(I) the space of s-absolutely continuous functions on I,
i.e., the set of functions u : I → R such that there exists a locally absolutely
continuous function ϕ with u = ϕ ◦ s.

Let us consider a Radon measure m on I with full support. We designate
by

D(s) :=
{
u : I → R : u ∈ ACs(I),

∫
I

(du
ds

(x)
)2

ds(x) < ∞
}
,

where du
ds is the Radon Nikodym derivative of du with respect to ds.

We define the quadratic form E with domain D ⊂ L2(I,m) by

D := D(s) ∩ L2(I,m), E [u] :=
∫
I

(du
ds

(x)
)2

ds(x) for all u ∈ D.(2.1)
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It is well known that E is a regular strongly local Dirichlet form in L2(I,m)
[3]. Moreover, the positive self-adjoint operator associated with the form E
via Kato’s representation theorem, which we denote by L, is given by (see
[12, Section 2] and [5, Chap. 1])

D(L) =
{
u ∈ D :

du

ds
is abs. cont. w.r.t. dm, Lu = − d

dm

(du
ds

)
∈ L2(I,m),

with boundary conditions at r1 and r2
}
,

Lu = Lu for all u ∈ D(L).

We have the following facts about the boundary conditions at r1 and r2 to
apply to u in D(L) (we refer to [13, Section 2], [8]):

(i) If r1 (resp. r2) is an exit endpoint, then we have the following boundary
condition at r1 (resp. r2)

lim
x→r1

u(x) = 0 (resp. lim
x→r2

u(x) = 0).

(ii) If r1 (resp. r2) is an entrance endpoint, then we have the following
boundary condition at r1 (resp. r2)

lim
x→r1

du

ds
(x) = 0 (resp. lim

x→r2

du

ds
(x) = 0).

Remark 2.1. The second-order ordinary differential operator ([3, pp. 63–64])

Lu(x) = a(x)u′′(x) + b(x)u′(x)

with real-valued functions a > 0 and b can be converted into Feller’s canonical
form d

dm
d
ds with

ds = e−B(x)dx, dm =
eB(x)

a(x)
dx, B(x) =

∫ x

x0

b(y)

a(y)
dy.

Hence, by formal computation we get

−
∫

Lu · v dm = −
∫

v · ddu
ds

=

∫
du

ds

dv

ds
ds, ∀u, v ∈ C2

c (I).

Owing to Feller’s canonical form we can define the differential operator L on I
by

L := − d

dm

d

ds
.

2.1. Feller’s boundary classification

Let us introduce the following quantities

(2.2) Γ1 =

∫ c

r1

(
m(c)−m(x)

)
ds(x), Σ1 =

∫ c

r1

(
s(c)− s(x)

)
dm(x)

and

(2.3) Γ2 =

∫ r2

c

(
m(x)−m(c)

)
ds(x), Σ2 =

∫ r2

c

(
s(x)− s(c)

)
dm(x)
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for some r1 < c < r2.
It is well known (see [10, pp. 271–273]) that the boundaries r1 and r2 of I

can be classified with respect to the Feller operator d
dm

d
ds into four classes as

follows (we refer the reader to [9, pp. 151–152] or [13, pp. 24–25]):

(a) ri is a regular boundary if Γi < ∞, Σi < ∞,
(b) ri is an exit boundary if Γi < ∞, Σi = ∞,
(c) ri is an entrance boundary if Γi = ∞, Σi < ∞,
(d) ri is a natural boundary if Γi = ∞, Σi = ∞.

Definition 2.2. We say that the boundary r1 (resp. r2) is approachable when-
ever s(r1) > −∞ (resp. s(r2) < ∞).

Definition 2.3. The boundary r1 (resp. r2) is called regular whenever it is
approachable and m((r1, c)) < ∞, (resp. m((c, r2)) < ∞) ∀ c ∈ (r1, r2).

2.2. Extended Dirichlet spaces

Let us now introduce the extended Dirichlet space of E ([3, Chap. 1]), which
we denote by De.

Definition 2.4. Let (E ,D) be a closed symmetric form on L2(I,m). Denote
by De the totality of m-equivalence classes of all m-measurable functions f
on I such that |f | < ∞, m − a.e and there exists an E-Cauchy sequence
{fn, n ≥ 1} ⊂ D such that limn→∞ fn = f, m− a.e. on I. {fn} ⊂ D above is
called an approximating sequence of f ∈ De. We call the space De the extended
space attached to (E ,D). When the latter is a Dirichlet form on L2(I,m), the
space De will be called its extended Dirichlet space.

Henceforth, to determine the extended Dirichlet space De we shall make use
the following proposition. We include it for the convenience of the reader.

Proposition 2.5 (see [3, p. 66]). Assume that for some i ∈ 1, 2, ri is ap-
proachable but non-regular. If we let

(2.4) D(s)
0 := {u ∈ D(s) : u(ri) = 0},

then

(2.5) D ⊂ De = D(s)
0 ,

and (E ,D) is a regular, strongly local, transient, and irreducible Dirichlet form
on L2(I,m).

It is well known that E is transient if and only if (see [3, Theorem 2.2.11]) either
r1 or r2 is approachable and non-regular. Otherwise it is recurrent.

From now on we assume that either r1 or r2 is approachable but non-regular.
Thus E is transient. By virtue of Feller’s classical test of non-explosion, E is
conservative if and only if (see [3, p. 126] and the discussion made there)

(2.6)

∫
(r1,c)

m((x, c)) ds(x) =

∫
(c,r2)

m((c, x)) ds(x) = ∞, ∀ r1 < c < r2.
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In this case, the boundaries r1 and r2 are non-exit points.

Remark 2.6. Suppose the following assumptions are fulfilled:

(H1) s, s−1 ∈ ACloc(I).
(H2) s′ = σ > 0 and 1

σ ∈ L1
loc(I).

Then

(1) ACs(I) coincides with ACloc(I). In fact, let u ∈ ACs(I). Thus there
exists ϕ ∈ ACloc(I) such that u = ϕ◦s. As s ∈ ACloc(I) by assumption
(H1), then u ∈ ACloc(I).

Conversely, let u ∈ ACloc(I). Then u = u◦s−1◦s and by assumption
(H1), u ◦ s−1 ∈ ACloc(I) and hence u ∈ ACs(I).

(2) C∞
c (I) ⊂ D. Indeed, let u ∈ C∞

c (I). Obviously u ∈ L2(I,m) and is
locally absolutely continuous. It remains to show that E(s)[u] < ∞.

As by assumptions s−1 and s are locally absolutely continuous, we
obtain

du

ds
=

du

dx
· dx
ds

=
du

dx
· 1

ds
dx

=
du

dx
· 1
σ
.

Then the fact 1
σ ∈ L1

loc(I) leads to∫
I

(du
ds

)2
(x) ds(x) =

∫
I

(
du

dx
.
1

σ

)2

(x) σ(x)dx =

∫
I

u′(x)2
dx

σ(x)
< ∞.

Accordingly, we obtain

D(s) =
{
u : I → R : u ∈ ACloc(I),

∫
I

(u′(x))2
dx

σ(x)
< ∞

}
,(2.7)

D := D(s) ∩ L2(I,m), E [u] :=
∫
I

(u′(x))2
dx

σ(x)
for all u ∈ D.(2.8)

3. Computation of the trace of E

Let V = {xk ∈ (r1, r2), k ∈ N} ⊂ I be a countable set, where (xk)k∈N is
a strictly increasing sequence, i.e., xk < xk+1 for all k ∈ N. In addition, let
x∞ = limk→∞ xk, where the increasing limit may be finite or infinite.

Next, we will investigate the following two cases for a transient Dirichlet
form E :

(1) V has no accumulation point in Ī (the closure of I in R).
(2) V has x∞ as an accumulation point in Ī.

We turn our attention to discuss some properties of capacity which is a set
function associated to a Dirichlet form. Also it plays an important role to
measure the size of sets adapted to the form.

Definition 3.1. We define the 1-capacity Cap1 associated with the Dirichlet
form (E ,D) by

Cap1(U) := inf {E1[u] : u ∈ D, u ≥ 1, m− a.e. in U}
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for an open set U ⊂ I, and

Cap1(A) := inf {Cap1(U) : U ⊂ I open, A ⊂ U}
for a Borel set A ⊂ I, where

E1[u] := E [u] +
∫
I

u2(x) dm(x) for u, v ∈ D.

The following lemma shows that a diffusion process associated with a Dirich-
let form E enjoys a strong irreducibility property which means that any two
points of I are connected for a diffusion process.

Lemma 3.2. For all x ∈ V , we have Cap1({x}) > 0.

Proof. An elementary identity

u(ξ)− u(y) =

∫ ξ

y

du

ds
(x) ds(x), ∀ r1 < ξ < y < r2

and Hölder’s inequality lead to

(3.1)
(
u(ξ)− u(y)

)2 ≤ s([y, ξ])E [u], ∀ r1 < ξ < y < r2.

We get from (3.1)

(3.2) sup
ξ≤z≤y

u(z)2 ≤ 2 s([y, ξ])E [u] + 2u(x)2, ξ ≤ x ≤ y.

Then for each compact set K ⊂ I, there is a positive constant CK such that

(3.3) sup
x∈K

u(x)2 ≤ CK E1[u], ∀u ∈ D.

Hence Cap1({x}) ≥ 1
CK

> 0 for every x ∈ I. □

Remark 3.3. According to the inequality (3.1), if r1 (resp. r2) is approach-
able, then for any element from D(s) we have u(r1) = limx↓r1,x∈I u(x) <
∞, (resp. u(r2) = limx↑r2,x∈I u(x) < ∞) and u ∈ C([r1, r2)) (resp. u ∈
C((r1, r2])). In particular, D(s) is a uniformly dense sub-algebra of C([r1, r2]) if
both r1 and r2 are approachable (for more details we refer to [3, Chap. II]).

We shall start by the first case (a) which says that V has no accumulation
point in Ī, i.e., x∞ = ∞. Assume that (r1, r2) = (r1,∞).

3.1. V has no accumulation point in Ī

Let (ak)k∈N be a sequence of real numbers such that ak > 0 for all k ∈ N.
Let us consider the atomic measure defined as follows:

µ =
∑
k∈N

akδxk
.

We define now the Hilbert space ℓ2(V, µ) equipped with the scalar product
given by

(u, v) :=
∑
k∈N

u(xk)v(xk) ak and ∥u∥ :=
√

(u, u).
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Let Ě be the trace of E on the discrete set V (see [1, 2, 5]). As by assumptions
E is transient we adopt the method elaborated in [1] to compute explicitly Ě .

Let us now explain our computation strategies.
Owing to Proposition 2.5 the extended domain De is given by

De =
{
u : I → R : u ∈ ACs(I),

∫
I

(du
ds

(x)
)2

ds(x) < ∞ such that u(ri) = 0

if ri is approachable and non-regular
}
.

Henceforth, we define the operator L by

D(L) =
{
u ∈ D :

du

ds
is abs. cont. w.r.t. dm, lim

x→r1

du

ds
(x) = 0,

Lu = − d

dm

(du
ds

)
∈ L2(I,m)

}
,

Lu = Lu for all u ∈ D(L).

Let J be the restriction operator defined from dom J ⊆ (E ,De) to ℓ2(V, µ) by

dom J :=
{
u ∈ De :

∑
k∈N

aku(xk)
2 < ∞

}
,

Ju := u|V for all u ∈ dom J.

Since E is regular and the functions with finite support are dense in ℓ2(V, µ),
the operator J has dense range. Obviously

ker J =
{
u ∈ dom J : u(xk) = 0 for all k ∈ N

}
.

According to [1, Prop. 5.5], the construction of the trace form coincides with
Fukushima’s construction. Accordingly we can compute Ě following Fukushi-
ma’s method. To that end we designate by P the orthogonal projection in the
Dirichlet space (E ,De) onto the E-orthogonal complement of ker J . Then

dom Ě = ranJ and Ě [Ju] = E [Pu] for all u ∈ dom J.

Clearly

(ker J)⊥E = {u ∈ De : E(u, v) = 0 for all v ∈ ker J}.

Lemma 3.4. J is closed in (E ,De).

Proof. Let (un)n∈N be a sequence in dom J and u ∈ De such that un E-
converges to u in De and (Jun)n∈N converges to v in ℓ2(V, µ). Then according
to [5, Theorem 2.1.4] there exists a subsequence (unk

) such that unk
→ u q.e.

and hence also µ-a.e. It holds u = v µ-a.e., yielding u ∈ dom J and Ju = v. □

We are in position now to compute explicitly the E-orthogonal projection
Pu.

From now on we set r1 = x0 and N0 = N ∪ {0}.
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Lemma 3.5. Let u ∈ De. Then

(3.4) Pu(x) = u(xk) +
s(x)− s(xk)

s([xk, xk+1])

(
u(xk+1)− u(xk)

)
for all x ∈ [xk, xk+1] and k ∈ N0.

Proof. To avoid technicalities, we give the proof in the case r1 is approachable
but non-regular. The proof of the general case is similar.

Let v ∈ KerJ . Then E(Pu, v) = 0, which is equivalent to

(3.5)
∑
k∈N0

∫ xk+1

xk

dPu

ds
(x)

dv

ds
(x) ds(x) = 0.

If dPu
ds = Ck is constant on each interval [xk, xk+1], we have∫ xk+1

xk

dPu

ds
(x)

dv

ds
(x) ds(x) = Ck

(
v(xk+1)− v(xk)

)
= 0,

and then ∑
k∈N0

∫ xk+1

xk

dPu

ds
(x)

dv

ds
(x) ds(x) = 0.

Let us show that the function

v(x) = u(xk)+
s(x)− s(xk)

s([xk, xk+1])

(
u(xk+1)−u(xk)

)
for all x ∈ [xk, xk+1] and k ∈ N0

is in fact Pu.
Obviously v(xk) = u(xk) for all integers k, the function v is locally absolutely

continuous and

(3.6)
dv

ds
=

(
u(xk+1)− u(xk)

)
s([xk, xk+1])

.

Let us show that ∫
I

(dv
ds

(x)
)2

ds(x) < ∞.

We have ∫
I

(dv
ds

(x)
)2

ds(x) =
∑
k∈N0

∫ xk+1

xk

(
u(xk+1)− u(xk)

)2
s([xk, xk+1])2

ds(x)

=
∑
k∈N0

(
u(xk+1)− u(xk)

)2 1

s([xk, xk+1])
.

On the other hand, it holds:

u(xk+1)− u(xk) =

∫ xk+1

xk

du

ds
(x) ds(x).

Then (
u(xk+1)− u(xk)

)2 ≤ s([xk, xk+1])

∫ xk+1

xk

(du
ds

(x)
)2
ds(x).



CONSERVATIVENESS OF TRACES OF ONE-DIMENSIONAL DIFFUSIONS 787

Accordingly, using the fact u ∈ De, we achieve∫
I

(dv
ds

(x)
)2

ds(x) ≤
∑
k∈N0

∫ xk+1

xk

(du
ds

(x)
)2
ds(x) =

∫
I

(du
ds

(x)
)2

ds(x) < ∞.

Thereby v ∈ De.
Let us now prove that E(v, φ) = 0 for all φ ∈ kerJ .
Let φ ∈ KerJ . Then

E(v, φ) =
∑
k∈N0

∫ xk+1

xk

dv

ds
(x)

dφ

ds
(x) ds(x)

=
∑
k∈N0

u(xk+1)− u(xk)

s(xk+1)− s(xk)

∫ xk+1

xk

dφ

ds
(x) ds(x)

=
∑
k∈N0

u(xk+1)− u(xk)

s(xk+1)− s(xk)

(
φ(xk+1)− φ(xk)

)
= 0. □

Theorem 3.6. It holds dom(Ě) = ranJ and

Ě [Ju] =
∞∑
k=0

1

s([xk, xk+1])

(
u(xk+1)− u(xk)

)2
for all u ∈ domJ.(3.7)

Proof. Let u ∈ dom J . Having formula (3.6), a straightforward computation
leads to

Ě [Ju] = E [Pu] =

∫ r2

r1

(dPu

ds
(x)

)2
ds(x)

=

∞∑
k=0

∫ xk+1

xk

(
u(xk+1)− u(xk)

s([xk, xk+1])

)2

ds(x)

=

∞∑
k=0

1

s([xk, xk+1])

(
u(xk+1)− u(xk)

)2
,(3.8)

which completes the proof. □

Definition 3.7. We say that (V, b) is a weighted graph if V is a discrete and
countably infinite space and b : V × V → [0,∞) is a symmetric function which
is zero on the diagonal of V × V such that

∑
y∈V b(x, y) < ∞, x ∈ V . We say

that two vertices x and y in V are neighbors if b(x, y) > 0 and we write x ∼ y
in this case.

Remark 3.8. Let us rewrite Ě as follows

Ě [Ju] =
∑
xk∈V

∑
xj∼xk

b(xk, xj)
(
u(xk)− u(xj)

)2
=

∑
k∈N

b(xk, xk+1)
(
u(xk+1)− u(xk)

)2
for all u ∈ dom J,
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where

b(xk, xk+1) =
1

2 (s(xk+1)− s(xk))
> 0 if xk ∼ xk+1, k ∈ N,

and b(xk, xk+1) = 0 otherwise.
Assume that µ(V ) = ∞. Then the condition (A) of [11] is fulfilled.
Set

(3.9) L̃u(xk) =
1

ak

∑
j

b(xk, xj)
(
u(xk)− u(xj)

)
for each k ∈ N.

Then, L̃
(
Cc(V )

)
⊆ Cc(V ).

Hence according to [11, Theorem 6] Ľ is given by

D(Ľ) :=
{
u ∈ ℓ2(V, µ) : L̃u ∈ ℓ2(V, µ)

}
,

Ľu = L̃u.

Hence, for all k ∈ N and u ∈ dom(Ľ) it holds

Ľu(xk) =
1

ak
b(xk, xk−1)

(
u(xk)− u(xk−1)

)
+

1

ak
b(xk, xk+1)

(
u(xk)− u(xk+1)

)
=

1

ak s([xk−1, xk])

(
u(xk)− u(xk−1)

)
+

1

ak s([xk, xk+1])

(
u(xk)− u(xk+1)

)
= − u(xk+1)

aks([xk, xk+1])
+

s([xk−1, xk+1])u(xk)

aks([xk, xk+1])s([xk−1, xk])

− u(xk−1)

aks([xk−1, xk])
.(3.10)

By [11, Theorem 6], once again, we obtain the following description of Ě :

ran J =

{
u = (uk) ∈ ℓ2(V, µ),

∞∑
k=0

1

s([xk, xk+1])

(
u(xk+1)− u(xk)

)2
< ∞

}
,(3.11)

Ě [u] =
∞∑
k=0

1

s([xk, xk+1])

(
u(xk+1)− u(xk)

)2
.(3.12)

Remark 3.9. Assume that r1 = −∞, V = Z and ak = 1 for all k ∈ Z. Then the
expression (3.10) can be regarded as a Jacobi operator which has the following
form:

(3.13) J u(k) := A(k)u(k + 1) +B(k)u(k) +A(k − 1)u(k − 1), ∀k ∈ Z.
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3.2. V has an accumulation point in Ī

Now we consider the second case (b), where the sequence (xk)k∈N of the set
V is convergent and it has x∞ as a limit. We keep the same definitions as
above. Arguing as in the former case we get that for any u ∈ De, the following
expression of Pu

Pu(x) = u(xk) +
s(x)− s(xk)

s([xk, xk+1])

(
u(xk+1)− u(xk)

)
, in [xk, xk+1], k ∈ N0,

Pu is a constant in (r1, x1) and Pu(x) = u(x∞)− s(x)−s(x∞)
s([x∞,∞)) u(x∞) in [x∞,∞)

with the convention 1
s([x∞,∞)) = 0 if ∞ is non-approachable.

Next, the trace form Ě will be computed.

Proposition 3.10. For every u ∈ dom J , it holds

(3.14) Ě [Ju] =
∞∑
k=0

1

s([xk, xk+1])

(
u(xk+1)− u(xk)

)2
+

u(x∞)2

s([x∞,∞))
.

Proof. Let u ∈ dom J . We get

Ě [Ju] =
∫ r2

r1

(dPu

ds
(x)

)2
ds(x) =

∫ ∞

x0

(dPu

ds
(x)

)2
ds(x)

=

∞∑
k=0

∫ xk+1

xk

(dPu

ds
(x)

)2
ds(x) +

∫ ∞

x∞

(dPu

ds
(x)

)2
ds(x)

=

∞∑
k=0

∫ xk+1

xk

(
u(xk+1)− u(xk)

s([xk, xk+1])

)2

ds(x) +

∫ ∞

x∞

u(x∞)2

s([x∞,∞))2
ds(x)

=

∞∑
k=0

1

s([xk, xk+1])

(
u(xk+1)− u(xk)

)2
+

u(x∞)2

s([x∞,∞))
.(3.15)

□

Remark 3.11. In particular, if the end-point∞ is a non-approachable boundary,
i.e., s(∞) = ∞, then we have s([x∞,∞)) = ∞ and

Ě [Ju] =
∞∑
k=0

1

s([xk, xk+1])

(
u(xk+1)− u(xk)

)2
.

3.3. Trace of one-dimensional diffusions with respect to mixed type
measure

In this subsection we assume that r1 < 0, r2 = ∞. Let (xk)k∈N be a sequence
of negative numbers strictly increasing to 0. We consider a measure on (r1,∞)
of mixed type, i.e., a measure which has an absolutely continuous part and a
discrete part as follows

µ := µdisc + µabs,
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where

µdisc =

∞∑
k=1

akδxk
, ak > 0, k ∈ N and supp[µabs] = [0,∞).

Hence F = {xk < 0 : k ∈ N} ∪ [0,∞) is the support of the measure µ. In order
to compute the trace of E with respect to the measure µ we shall define the
trace operator J by

J : De ∩ L2(F, µ) → L2(F, µ), Ju = u|F .

Obviously, we have

Ker(J) := {u ∈ De : u(xk) = 0,∀k ∈ N, u|(0,∞)
= 0}.

Then Pu can expressed in the same way as follows:

(3.16) Pu(x) = u(xk)+
s(x)− s(xk)

s([xk, xk+1])

(
u(xk+1)−u(xk)

)
, in [xk, xk+1] k ∈ N0

and
Pu = u in [0,∞).

Lemma 3.12. It holds dom Ě = ranJ and

(3.17) Ě [Ju] =
∞∑
k=0

1

s([xk, xk+1])

(
u(xk+1)− u(xk)

)2
+

∫ ∞

0

(du
ds

(x)
)2
ds(x)

for all u ∈ dom J .

Proof. A straightforward computation leads

Ě [Ju] =
∫ r2

r1

(dPu

ds
(x)

)2
ds(x) =

∫ ∞

x0

(dPu

ds
(x)

)2
ds(x)

=

∞∑
k=0

∫ xk+1

xk

(dPu

ds
(x)

)2
ds(x) +

∫ ∞

0

(dPu

ds
(x)

)2
ds(x)

=

∞∑
k=0

∫ xk+1

xk

(
u(xk+1)− u(xk)

s([xk, xk+1])

)2

ds(x) +

∫ ∞

0

(du
ds

(x)
)2
ds(x)

=

∞∑
k=0

1

s([xk, xk+1])

(
u(xk+1)− u(xk)

)2
+

∫ ∞

0

(du
ds

(x)
)2
ds(x).(3.18)

□

We introduce Ďmax the space of the trace form Ě by

Ďmax = {u ∈ L2(F, µ) : u ∈ ACloc([0,∞)),

∞∑
k=0

(
u(xk+1)− u(xk)

)2
s([xk, xk+1])

+

∫ ∞

0

(du
ds

(x)
)2
ds(x) < ∞}.

We denote by Ě(J) and Ě(c) the quadratic forms such that

dom(Ě(J)) = dom(Ě(c)) = Ďmax
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and

Ě(c)[u] =

∫ ∞

0

(du
ds

(x)
)2
ds(x),

Ě(J)[u] =

∞∑
k=0

1

s(xk+1)− s(xk)

(
u(xk+1)− u(xk)

)2
,

where Ě(c) and Ě(J) are the strongly local type, non-local type Dirichlet forms
respectively.

Finally let

Ě := Ď = Ďmax, Ě [u] = Ě(J)[u] + Ě(c)[u] for all u ∈ Ďmax.

Let us stress that the latter decomposition was inspired by [2, Section 4] for
dimension n = 3 and V = (0, 1) ∪ N.

4. Conservativeness of traces of one-dimensional diffusions on
discrete sets

In this section we aim to establish necessary and sufficient conditions ensur-
ing the trace form Ě to enjoy the conservativeness property.

The form Ě is said to be conservative (or stochastically complete) if

Ťt1 = 1 for some and hence for every t > 0,

where Ťt stands for the L∞-semi-group induced by the Dirichlet form Ě .
Let us now start with the case where the set V has no accumulation point

in Ī.

Theorem 4.1. Assume that µ is infinite and V has no accumulation point in
Ī. Then the Dirichlet form Ě is conservative if and only if

∞∑
k=1

(
s(xk+1)− s(xk)

) k∑
j=1

aj = ∞.(4.1)

Proof. Remark 3.8, together with [11, Theorem 1] yield that the conservative-
ness of the Dirichlet form Ě is equivalent to the fact that the equation

(4.2) L̃u+ αu = 0, α > 0, u ∈ ℓ∞,

has no nontrivial bounded solution where L̃ is given by (3.9).
We rewrite

L̃u(xk) + αu(xk) =
1

ak

∑
j

1

2 (s(xk)− s(xj))

(
u(xk)− u(xj)

)
+ αu(xk)

= 0.(4.3)

This leads to

u(x2) =
(
1 + 2αa1(s(x2)− s(x1))

)
u(x1),(4.4)
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and

(4.5)
(u(xk)− u(xk+1))

2ak
(
s(xk+1)− s(xk)

) +
(u(xk)− u(xk−1))

2ak
(
s(xk)− s(xk−1)

) + αu(xk) = 0

for all k ≥ 2.
Thus by induction and the recursive formula we get

u(xk+1)− u(xk)

=
s(xk+1)− s(xk)

s(xk)− s(xk−1)
(u(xk)− u(xk−1)) + 2akα

(
s(xk+1)− s(xk)

)
u(xk)

...

=
s(xk+1)− s(xk)

s(x2)− s(x1)
(u(x2)− u(x1)) + 2α

(
s(xk+1)− s(xk)

) k∑
j=2

aj u(xj)

= 2a1α
(
s(xk+1)− s(xk)

)
u(x1) + 2α

(
s(xk+1)− s(xk)

) k∑
j=2

aj u(xj)

= 2α
(
s(xk+1)− s(xk)

) k∑
j=1

aj u(xj), ∀ k ≥ 1.(4.6)

The latter formula gives rise to two observations (which can be proved by
induction):

1. u(xk) has the sign of u(x1) for all k ∈ N. This is if u(x1) > 0, then
u(xk) > 0 for all k ∈ N and if u(x1) < 0, hence u(xk) < 0 for all k ∈ N.

2. u(xk) is monotone, depending on the sign of u(x1).

Hence without loss of generality we may and shall assume that u(x1) > 0. In
this case (u(xk))k∈N is positive and strictly increasing.

Accordingly, making use of formula (4.6) we derive

(4.7) u(xk+1)− u(xk) ≤
(
2α

[
s(xk+1)− s(xk)

] k∑
j=1

aj

)
u(xk), ∀ k ≥ 1,

and

u(xk+1)

u(xk)
≤ 1 + 2α

[
s(xk+1)− s(xk)

] k∑
j=1

aj , ∀ k ≥ 1.(4.8)

Finally we achieve

u(xN+1) ≤ u(x1)

N+1∏
k=1

(
1 + 2α

[
s(xk+1)− s(xk)

] k∑
j=1

aj

)
(4.9)

for all integer N .
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Obviously the latter product is finite provided

∞∑
k=1

[
s(xk+1)− s(xk)

] k∑
j=1

aj < ∞

and then we get a bounded non-zero solution.

Conversely, assume that
∑∞

k=1

[
s(xk+1)− s(xk)

]∑k
j=1 aj = ∞. Then sum-

ming over k in formula (4.6) and keeping in mind that the sequence (u(xk))k∈N
is increasing and positive. We obtain

u(xN+1)− u(x1) = 2α

N∑
k=1

[
s(xk+1)− s(xk)

] k∑
j=1

aju(xj).(4.10)

Hence

u(xN+1) ≥ 2αu(x1)

N∑
k=1

[
s(xk+1)− s(xk)

] k∑
j=1

aj → ∞ as N → ∞,

which finishes the proof. □

Theorem 4.2. If µ is a finite measure, then Ě is not conservative.

Proof. If µ is finite Ě is conservative if and only if 1 ∈ ranJ and Ě [1] = 0.
This implies that there is u ∈ De such that u|F = 1 and E [Pu] = 0. But this
contradicts the fact that E is transient, since E is irreducible. Thus Ě is not
conservative. □

Proposition 4.3. Assume that V is a finite set. Then there exists N ∈ N
such that Ď = RN and for each u ∈ dom J

Ě [Ju] =
N−1∑
k=1

1

s(xk+1)− s(xk)

(
u(xk+1)− u(xk)

)2
+

u(xN )2

s([xN ,∞))
.

It follows that Ě is not conservative.

Proof. Non-conservativeness of the trace form Ě follows from the fact that
1 ∈ Ď and Ě [1] = 1

s([xN ,∞)) ̸= 0. □

Remark 4.4. For the case where V has x∞ as an accumulation point in Ī and
the measure µ is infinite, we remark that the trace form Ě has a killing part
in case ∞ is approachable. Hence owing to theoretical results (see [2]) it can’t
be conservative. However, if ∞ is non-approachable, arguing as in the proof of
Theorem 4.1, we conclude that Ě is conservative if and only if condition (4.1)
if fulfilled.
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5. Application: traces of the one-dimensional diffusion related to
Bessel’s process

For each n ∈ N, n ≥ 2. We consider the speed measure m defined on
I = (0,∞) by

dm(x) = 2x2ν+1dx, where ν =
n

2
− 1.

We define the scale function s as follows

s(x) = − 1

2ν x2ν
.

Obviously the functions s and s−1 fulfill all conditions demanded in Remark
2.6. Namely

• s and s−1 are absolutely continuous.
• 1

σ = x2ν+1 ∈ L1
loc(I).

We shall be concerned with the Dirichlet form E with domain D ⊂ L2(I,m).
In this situation we have L2(I,m) = L2(I, 2x2ν+1dx),

D(s) :=
{
u : (0,∞) → R : u is loc. abs. cont.,

∫ ∞

0

(u′(x))2x2ν+1dx < ∞
}
.

D := D(s) ∩ L2(I, 2x2ν+1dx), E [u] :=
∫ ∞

0

(u′(x))2x2ν+1dx for all u ∈ D.

Since n ≥ 3 the Dirichlet form E is transient [3, p. 126]. We can easily check
that for n ≥ 3, (i.e., ν ≥ 1

2 ) we obtain r1 = 0 is a non-approachable boundary,
i.e., s(0) = ∞. Whereas the boundary point r2 = ∞ is an approachable
boundary, i.e., s(∞) < ∞.

Hence, the extended domain is given by

De = {u ∈ D(s) : lim
x→∞

u(x) = 0}.

According to the Feller’s boundary classification, 0 is an entrance boundary.
Indeed

Γ1(0) = ∞ and Σ1(0) =
c2

2ν + 2
< ∞ for all constant c > 0.

In this situation, the selfadjoint adjoint operator related to E , which we denote
by L is the generator of the Bessel process of index ν on the half-line. Moreover
we have the following description of L. Set

L := −1

2

d2

dx2
− 2ν + 1

2x

d

dx
for all ν > −1

2
.

Then

D(L) =
{
u ∈ D : u′ ∈ ACloc(I), lim

x↓0+
x2ν+1u′(x) = 0,

Lu = −1

2
u′′ − 2ν + 1

2x
u′ ∈ L2(I,m)

}
,

Lu = Lu for all u ∈ D(L).
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We start with the case where the sequence (xk)k∈N has no accumulation point
in Ī. Accordingly we consider the discrete measure defined as the first section
by

µ =
∑
k∈N

akδxk
,

which is supported by an infinite countable set V = {xk > 0 : k ∈ N}.

Remark 5.1. In our case for n ≥ 2, r1 = {0} is an entrance boundary and it is
well known that Cap1({0}) = 0 (we refer to [10] for more details) and for each
element xk ∈ V we have Cap1({xk}) > 0.

To compute the trace of the general Bessel’s Dirichlet form Ě with domain
Ď ⊂ ℓ2(V, µ) we have to apply Theorem 3.6 with scale function s(x) = − 1

2ν x2ν

to obtain the following expression.

dom Ě = ranJ,

Ě [Ju] =
∞∑
k=1

1

s([xk, xk+1])

(
u(xk+1)− u(xk)

)2
=

∞∑
k=1

2ν
x2ν
k+1 x2ν

k

(x2ν
k+1 − x2ν

k )

(
u(xk+1)− u(xk)

)2
for all u ∈ dom J.

For the conservativeness property of the general Bessel’s Dirichlet forms we
have following result as an application of Theorem 4.1.

If µ is infinite, then Ě is conservative if and only if

∞∑
k=1

(x2ν
k+1 − x2ν

k )

x2ν
k+1 x2ν

k

k∑
j=1

aj = ∞.(5.1)

Finally we consider the case where the sequence (xk)k∈N converges to x∞.
According to Proposition 3.10 we obtain:

(1) If ∞ is an approachable boundary. It holds

Ě [Ju] =
∞∑
k=1

1

s(xk+1)− s(xk)

(
u(xk+1)− u(xk)

)2
+

u(x∞)2

s([x∞,∞))

= 2ν

∞∑
k=1

x2ν
k+1 x2ν

k

(x2ν
k+1 − x2ν

k )

(
u(xk+1)− u(xk)

)2
+ 2ν x2ν

∞u(x∞)2(5.2)

for all u ∈ dom J .
Regarding the conservativeness property, according to Remark 4.4, the
trace form Ě is not conservative.

(2) If ∞ is an non-approachable boundary, then we have

Ě [Ju] =
∞∑
k=1

1

s(xk+1)− s(xk)

(
u(xk+1)− u(xk)

)2
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= 2ν

∞∑
k=1

x2ν
k+1 x2ν

k

(x2ν
k+1 − x2ν

k )

(
u(xk+1)− u(xk)

)2
for all u ∈ dom J.(5.3)

By the virtue of Remark 4.4, the trace form Ě is conservative if and
only if condition (5.1) is fulfilled.
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