Acknowledgement
Hainan Natural Science Foundation of 2021 High-level Talents project "Research and application of Student Service Group Clustering and community Model based on Big Data mode" (No. 621RC611).
References
- Abdelsalam, M., Diab, H.Y. and El-Bary, A.A. (2021), "A metaheuristic harris hawk optimization approach for coordinated control of energy management in distributed generation based microgrids", Appl. Sci., 11(9), 4085. https://doi.org/10.3390/app11094085.
- Abu-Farsakh, M.Y. and Mojumder, M.A.H. (2020), "Exploring Artificial Neural Network to evaluate the undrained shear strength of soil from cone penetration test data", Transp. Res. Record, 2674(4), 11-22. https://doi.org/10.1177/0361198120912426.
- Ahmad, M.W., Mourshed, M. and Rezgui, Y. (2017), "Trees vs neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption", Energy Build., 147, 77-89. https://doi.org/10.1016/j.enbuild.2017.04.038.
- Aghayari Hir, M., Zaheri, M. and Rahimzadeh, N. (2022), "Prediction of rural travel demand by spatial regression and artificial neural network methods (Tabriz County)", J. Transp. Res., https://doi.org/10.22034/TRI.2022.312204.2970.
- ASTM D2850-03 (2017), Standard Test Method for Unconsolidated-Undrained Triaxial CompressionTest on Cohesive Soils, https://doi.org/10.1520/D2850-03.
- ASTM D3441-16 (2018), Standard Test Method for Mechanical Cone Penetration Testing of Soils, https://doi.org/10.1520/D3441-16.
- Archer, K.J. and Kimes, R.V. (2008), "Empirical characterization of random forest variable importance measures", Comput. Stat. Data Anal., 52(4), 2249-2260. https://doi.org/10.1016/j.csda.2007.08.015.
- Axelsson, G. (1998), "Long-term set-up of driven piles in non-cohesive soils evaluated from dynamic tests on penetration rods", Geotechnical Site Characterization, 895-900.
- Babbar, A., Prakash, C., Singh, S., Gupta, M.K., Mia, M. and Pruncu, C.I. (2020), "Application of hybrid nature-inspired algorithm: Single and bi-objective constrained optimization of magnetic abrasive finishing process parameters", J. Mater. Res. Technol., 9(4), 7961-7974. https://doi.org/10.1016/j.jmrt.2020.05.003.
- Bednarz, J.C. (1988), "Cooperative Hunting Harris' Hawks (Parabuteo unicinctus)", Sci., 239(4847), 1525-1527. https://doi.org/10.1126/science.239.4847.1525
- Benemaran, R.S. and Esmaeili-Falak, M. (2020), "Optimization of cost and mechanical properties of concrete with admixtures using MARS and PSO", Comput. Concrete, 26(4), 309-316. https://doi.org/10.12989/cac.2020.26.4.309.
- Bergahl, U. (1981), "Load tests on friction piles in clay", Proc. 10th Int. Conf. on SMFE, 625-630.
- Biau, G., Devroye, L. and Lugosi, G. (2008), "Consistency of random forests and other averaging classifiers", J. Mach. Learn. Res., 9(9), 2015-2033.
- Bond, A.J. and Jardine, R.J. (1991), "Effects of installing displacement piles in a high OCR clay", Geotechniq., 41(3), 341-363. https://doi.org/10.1680/geot.1991.41.3.341.
- Breiman, L. (2001), "Random forests", Mach. Learn., 45(1), 5-32. https://doi.org/10.1023/A:1010933404324.
- Bullock, P.J. (2008), "The easy button for driven pile setup: dynamic testing", From Research to Practice in Geotechnical Engineering, 471-488. https://doi.org/10.1061/40962(325)17.
- Bullock, P.J., Schmertmann, J.H., McVay, M.C. and Townsend, F.C. (2005), "Side shear setup. I: Test piles driven in Florida", J. Geotech. Geoenviron. Eng., 131(3), 292-300. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:3(292).
- Bullock, P.J. (1999). Pile Friction Freeze: A Field and Laboratory Study, University of Florida.
- Camp III, W.M. and Parmar, H.S. (1999), "Characterization of pile capacity with time in the cooper marl: Study of applicability of a past approach to predict long-term pile capacity", Transp. Res. Record, 1663(1), 16-24. https://doi.org/10.3141/1663-03.
- Chen, L., Li, Y., Zhao, G., Zhang, C. and Gao, F. (2020), "Multi-objective optimization and experimental investigation on hot extruded plate of high strength Al-Zn-Mg alloy", J. Mater. Res. Technol., 9(1), 507-519. https://doi.org/10.1016/j.jmrt.2019.10.080.
- Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D.T., ... & Ma, J. (2017), "A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility", Catena, 151, 147-160. https://doi.org/10.1016/j.catena.2016.11.032.
- Chen, W., Wang, Y., Cao, G., Chen, G. and Gu, Q. (2014), "A random forest model based classification scheme for neonatal amplitude-integrated EEG", Biomed. Eng. Online, 13(2), 1-13. https://doi.org/10.1186/1475-925X-13-S2-S4.
- Chow, F.C., Jardine, R.J., Brucy, F. and Nauroy, J.F. (1998), "Effects of time on capacity of pipe piles in dense marine sand", J. Geotech. Geoenviron. Eng., 124(3), 254-264. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:3(254).
- Duan, L., Wu, M. and Wang, Q. (2022), "Predicting the CPT-based pile set-up parameters using HHO-RF and WOA-RF hybrid models", Arab. J. Geosci., 15(7), 602. https://doi.org/10.1007/s12517-022-09843-4.
- Elias, M.B. (2008), Numerical Simulation of Pile Installation and Setup.
- Elsheikh, A.H., Abd Elaziz, M., Ramesh, B., Egiza, M. and Alqaness, M.A. (2021), "Modeling of drilling process of GFRP composite using a hybrid random vector functional link network/parasitism-predation algorithm", J. Mater. Res. Technol., 14, 298-311. https://doi.org/10.1016/j.jmrt.2021.06.033.
- Esmaeili-Falak, M. and Hajialilue-Bonab, M. (2012), "Numerical studying the effects of gradient degree on slope stability analysis using limit equilibrium and finite element methods", Int. J. Acad. Res., 4(4), 216-22. https://doi.org/10.7813/2075-4124.2012/4-4/A.30.
- Esmaeili-Falak, M., Katebi, H. and Javadi, A. (2018), "Experimental study of the mechanical behavior of frozen soils-A case study of tabriz subway", Periodica Polytechnica Civil Eng., 62(1), 117-125. https://doi.org/10.3311/PPci.10960.
- Esmaeili-Falak, M., Katebi, H., Vadiati, M. and Adamowski, J. (2019), "Predicting triaxial compressive strength and Young's modulus of frozen sand using artificial intelligence methods", J. Cold Region. Eng., 33(3), 4019007. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000188.
- Esmaeili Falak, M. and Sarkhani Benemaran, R. (2022), "Investigating the stress-strain behavior of frozen clay using triaxial test", J. Struct. Constr. Eng., 10(1), 1. https://doi.org/10.22065/JSCE.2022.332406.2747.
- Esmaeili-Falak, M. and Benemaran, R.S. (2023), "Ensemble deep learning-based models to predict the resilient modulus of modified base materials subjected to wet-dry cycles", Geomech. Eng., 32(6), 583-600. https://doi.org/10.12989/gae.2023.32.6.583.
- Ge, D.M., Zhao, L.C. and Esmaeili-Falak, M. (2023), "Estimation of rapid chloride permeability of SCC using hyperparameters optimized random forest models", J. Sustain. Cement-Bas. Mater., 12(5), 542-560. https://doi.org/10.1080/21650373.2022.2093291.
- Guang-Yu, Z. (1988), "Wave equation applications for piles in soft ground", Proceeding Third International Conference on the Application of Stress-Wave Theory to Piles, Ottawa, Canada.
- Hammerstrom, D. (1993), "Neural networks at work", IEEE Spectrum, 30(6), 26-32. https://doi.org/10.1109/6.214579.
- Haque, M.N., Abu-Farsakh, M.Y., Chen, Q. and Zhang, Z. (2014), "Case study on instrumenting and testing full-scale test piles for evaluating setup phenomenon", Transp. Res. Record, 2462(1), 37-47. https://doi.org/10.3141/2462-05.
- Haque, M.N. (2015), "Field instrumentation and testing to study set-up phenomenon of driven piles and its implementation in LRFD design methodology", Louisiana State University and Agricultural & Mechanical College.
- Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M. and Chen, H. (2019), "Harris Hawks optimization: Algorithm and applications", Future Gener. Comput. Syst., 97, 849-872. https://doi.org/10.1016/j.future.2019.02.028.
- Hoang, N.D., Chen, C.T. and Liao, K.W. (2017), "Prediction of chloride diffusion in cement mortar using multi-gene genetic programming and multivariate adaptive regression splines", Measure., 112, 141-149. https://doi.org/10.1016/j.measurement.2017.08.031.
- Hong, H., Pourghasemi, H.R. and Pourtaghi, Z.S. (2016), "Landslide susceptibility assessment in Lianhua County (China), A comparison between a random forest data mining technique and bivariate and multivariate statistical models", Geomorphol., 259, 105-18. https://doi.org/10.1016/j.geomorph.2016.02.012.
- Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of ICNN'95-International Conference on Neural Networks, IEEE, 4, 1942-1948.
- Khoshaim, A.B., Elsheikh, A.H., Moustafa, E.B., Basha, M. and Mosleh, A.O. (2021), "Prediction of residual stresses in turning of pure iron using artificial intelligence-based methods", J. Mater. Res. Technol., 11, 2181-2194. https://doi.org/10.1016/j.jmrt.2021.02.042.
- Komurka, V.E., Wagner, A.B. and Edil, T.B. (2003). Estimating Soil/Pile Set-Up, Wisconsin Highway Research Program, No. Report No. 03-05, Madison, WI, USA.
- Lee, J., Prezzi, M. and Salgado, R. (2011), "Experimental investigation of the combined load response of model piles driven in sand", Geotech. Test. J., 34(6), 653-667. https://doi.org/10.1520/GTJ103269.
- Lee, W., Kim, D., Salgado, R. and Zaheer, M. (2010), "Setup of driven piles in layered soil", Soil. Found., 50(5), 585-598. https://doi.org/10.3208/sandf.50.585.
- Liaw, A. and Matthew, W. (2002), "Classification and Regression by RandomForest", R News, 2(3), 18-22.
- Liu, J., Jiang, Y., Zhang, Y. and Sakaguchi, O. (2021), "Influence of different combinations of measurement while drilling parameters by artificial neural network on estimation of tunnel support patterns", Geomech. Eng., 25(6), 439-453. https://doi.org/10.12989/gae.2021.25.6.439.
- Looney, C.G. (1996), "Advances in feedforward neural networks: Demystifying knowledge acquiring black boxes", IEEE Trans. Knowl. Data Eng., 8(2), 211-226. https://doi.org/10.1109/69.494162.
- Luat, N.V., Lee, K. and Thai, D.K. (2020), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), 385-397. https://doi.org/10.12989/gae.2020.20.5.385.
- McVay, M.C., Schmertmann, J., Townsend, F. and Bullock, P. (1999), "Pile friction freeze: A field investigation study", Research Report No. WPI 0510632.
- Moayedi, H. and Mosavi, A. (2021), "Synthesizing multi-layer perceptron network with ant lion biogeography-based dragonfly algorithm evolutionary strategy invasive weed and league champion optimization hybrid algorithms in predicting heating load in residential buildings", Sustain., 13(6), 3198. https://doi.org/10.3390/su13063198.
- Mohammad, L.N., Raghavendra, P.A., Medeiros Jr, P.M. and Hassan, M. (2018), Louisiana Transportation Research Center, Contract, 3, 3B.
- Mojumder, M.A.H. (2020), "Evaluation of undrained shear strength of soil, ultimate pile capacity and pile set-up parameter from Cone Penetration Test (CPT) Using Artificial Neural Network (ANN)", Louisiana State University and Agricultural & Mechanical College.
- Ng, K.W., Roling, M., AbdelSalam, S.S., Suleiman, M.T. and Sritharan, S. (2013), "Pile setup in cohesive soil. II: Analytical quantifications and design recommendations", J. Geotech. Geoenviron. Eng., 139(2), 210-222. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000753.
- Nhu, V.H., Hoang, N.D., Duong, V.B., Vu, H.D. and Tien Bui, D. (2020), "A hybrid computational intelligence approach for predicting soil shear strength for urban housing construction: A case study at Vinhomes Imperia Project, Hai Phong City (Vietnam)", Eng. Comput., 36(2), 603-616. https://doi.org/10.1007/s00366-019-00718-z.
- Paikowsky, S.G., Regan, J.E. and McDonnell, J.J. (1994), "A simplified field method for capacity evaluation of driven piles", Federal Highway Administration.
- Pham, B.T., Qi, C., Ho, L.S., Nguyen-Thoi, T., Al-Ansari, N., Nguyen, M.D., ... & Prakash, I. (2020), "A novel hybrid soft computing model using random forest and particle swarm optimization for estimation of undrained shear strength of soil", Sustain., 12(6), 2218. https://doi.org/10.3390/su12062218.
- Qi, C., Chen, Q., Fourie, A. and Zhang, Q. (2018), "An intelligent modelling framework for mechanical properties of cemented paste backfill", Miner. Eng., 123, 16-27. https://doi.org/10.1016/j.mineng.2018.04.010.
- Qin, W., Wang, L., Liu, Y. and Xu, C. (2021), "Energy consumption estimation of the electric bus based on grey wolf optimization algorithm and support vector machine regression", Sustain., 13(9), 4689. https://doi.org/10.3390/su13094689.
- Richardson, B.D. (2011), A Case Study on Pile Relaxation in Dilative Silts, University of Rhode Island.
- Samson, L. and Authier, J. (1986), "Change in pile capacity with time: Case histories", Can. Geotech. J., 23(2), 174-180. https://doi.org/10.1139/t86-027.
- Sarkhani Benemaran, R., Esmaeili-Falak, M. and Katebi, H. (2020), "Physical and numerical modelling of pile-stabilised saturated layered slopes", Proc. Inst. Civil Eng.-Geotech. Eng., 175(5), 523-538. https://doi.org/10.1680/jgeen.20.00152.
- Sarkhani Benemaran, R., Esmaeili-Falak, M. and Javadi, A. (2022), "Predicting resilient modulus of flexible pavement foundation using extreme gradient boosting based optimised models", Int. J. Pave. Eng., 1-20. https://doi.org/10.1080/10298436.2022.2095385.
- Benemaran, R.S. (2023), "Application of extreme gradient boosting method for evaluating the properties of episodic failure of borehole breakout", Geoenergy Sci. Eng., 226, 211837. https://doi.org/10.1016/j.geoen.2023.211837.
- Schmertmann, J.H. (1991), "The mechanical aging of soils", J. Geotech. Eng., 117(9), 1288-1330. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1288).
- Shahin, M.A., Maier, H.R. and Jaksa, M.B. (2004), "Data division for developing neural networks applied to geotechnical engineering", J. Comput. Civil Eng., 18(2), 105-114. https://doi.org/10.1061/(ASCE)0887-3801(2004)18:2(105).
- Shehabeldeen, T.A., Abd Elaziz, M., Elsheikh, A.H. and Zhou, J. (2019), "Modeling of friction stir welding process using adaptive Neuro-Fuzzy inference system integrated with Harris Hawks optimizer", J. Mater. Res. Technol., 8(6), 5882-5892. https://doi.org/10.1016/j.jmrt.2019.09.060.
- Shi, Y. and Eberhart, R.C. (1998), "Parameter Selection in particle swarm optimization", Evolutionary Programming VII: 7th International Conference, EP98 San Diego, California, USA, March.
- Shi, X., Yu, X. and Esmaeili-Falak, M. (2023), "Improvedarithmetic optimization algorithm and its application to carbon fiber reinforced polymer-steel bond strength estimation", Compos. Struct., 306, 116599. https://doi.org/10.1016/j.compstruct.2022.116599.
- Shozib, I.A., Ahmad, A., Rahaman, M.S.A., majdi Abdul-Rani, A., Alam, M.A., Beheshti, M. and Taufiqurrahman, I. (2021), "Modelling and optimization of microhardness of electroless Ni-P-TiO2 composite coating based on machine learning approaches and RSM", J. Mater. Res. Technol., 12, 1010-1025. https://doi.org/10.1016/j.jmrt.2021.03.063.
- Skov, R. and Denver, H. (1988), "Time-dependence of bearing capacity of piles", Proceedings of the Third International Conference on the Application of Stress-Wave Theory to Piles, Ottawa, May.
- Steward, E.J. and Wang, X. (2011), "Predicting pile setup (Freeze), A new approach considering soil aging and pore pressure dissipation", Geo-Frontiers 2011: Advances in Geotechnical Engineering, 11-19. https://doi.org/10.1061/41165(397)2.
- Stone, M. (1974), "Cross-validatory choice and assessment of statistical predictions", J. Roy. Stat. Soc.: Ser. B (Methodolog.), 36(2), 111-133. https://doi.org/10.1111/j.2517-6161.1974.tb00994.x.
- Stumpf, A. and Kerle, N. (2011), "Object-oriented mapping of landslides using random forests", Remote Sens. Environ., 115(10), 2564-2577. https://doi.org/10.1016/j.rse.2011.05.013.
- Sun, D., Wen, H., Wang, D. and Xu, J. (2020), "A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm", Geomorph., 362, 107201. https://doi.org/10.1016/j.geomorph.2020.107201.
- Svinkin, M.R., Morgano, C.M. and Morvant, M. (1994), "Pile capacity as a function of time in clayey and sandy soils", Deep Foundations Institute Fifth International Conference and Exhibition on Piling and Deep Foundations, June.
- Trelea, I.C. (2003), "The particle swarm optimization algorithm: Convergence analysis and parameter selection", Inform. Proc. Lett., 85(6), 317-325. https://doi.org/10.1016/S0020-0190(02)00447-7.
- Trigila, A., Iadanza, C., Esposito, C. and Scarascia-Mugnozza, G. (2015), "Comparison of logistic regression and random forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy)", Geomorph., 249, 119-136. https://doi.org/10.1016/j.geomorph.2015.06.001.
- Wang, J., Fa, Y., Tian, Y. and Yu, X. (2021), "A machine-learning approach to predict creep properties of Cr-Mo steel with time-temperature parameters", J. Mater. Res. Technol., 13, 635-650. https://doi.org/10.1016/j.jmrt.2021.04.079.
- Wang, S.T. and Reese, L.C. (1989), "Predictions of response of piles to axial loading", Predicted and Observed Axial Behavior of Piles: Results of a Pile Prediction Symposium, ASCE, 173-187.
- Xiang, G., Yin, D., Cao, C. and Yuan, L. (2021), "Application of Artificial Neural Network for prediction of flow ability of soft soil subjected to vibrations", Geomech. Eng., 25(5), 395-403. https://doi.org/10.12989/gae.2021.25.5.395.
- Yu, Z., Shi, X., Zhou, J., Chen, X. and Qiu, X. (2020), "Effective assessment of blast-induced ground vibration using an optimized random forest model based on a Harris Hawks optimization algorithm", App. Sci., 10(4), 1403. https://doi.org/10.3390/app10041403.
- Zhang, P., Yin, Z.Y., Jin, Y.F. and Chan, T.H. (2020), "A novel hybrid surrogate intelligent model for creep index prediction based on particle swarm optimization and random forest", Eng. Geology, 265, 105328. https://doi.org/10.1016/j.enggeo.2019.105328.
- Zhao, Z., Chen, S., Zhang, D., Peng, B., Li, X. and Zheng, Q. (2022), "Utilizing the GOA-RF hybrid model, predicting the CPT-based pile set-up parameters", Geomech. Eng., 31(1), 113. https://doi.org/10.12989/gae.2022.31.1.113.