DOI QR코드

DOI QR Code

Experimental study on damage and debonding of the frozen soil-concrete interface under freeze-thaw cycles

  • Liyun Tang (Architecture and Civil Engineering School, Xi'an University of Science and Technology) ;
  • Yang Du (Architecture and Civil Engineering School, Xi'an University of Science and Technology) ;
  • Liujun Yang (School of Resources and Civil Engineering, Northeastern University) ;
  • Xin Wang (School of Resources and Civil Engineering, Northeastern University) ;
  • Long Jin (CCCC First Highway Consultants Co. Ltd.) ;
  • Miaomiao Bai (Architecture and Civil Engineering School, Xi'an University of Science and Technology)
  • 투고 : 2022.07.14
  • 심사 : 2023.04.26
  • 발행 : 2023.06.10

초록

Freeze-thaw cycles induce strength loss at the frozen soil-concrete interface and deterioration of bonding, which causes construction engineering problems. To clarify the deterioration characteristics of the interface under the freeze-thaw cycle, a frozen soil-concrete sample was used as the research object, an interface scanning electron microscope test under the freeze-thaw cycle was carried out to identify the micro index information, and an interface shear test was carried out to explore the loss law of interface shear strength under the freeze-thaw cycle. The results showed that the integrity of the interface was destroyed, and the pore number and pore size of the interface increased significantly with the number of freeze-thaw cycles. The connection form gradually deteriorates from surface-to-surface contact to point-to-surface contact and point-to-point contact, and the interfacial shear strength decreases the most at 0-3 freeze-thaw cycles, with small decreases from to 3-8 cycles. After 12 freeze-thaw cycles, the interfacial shear strength tends to be stable, and shear the failure occurs internally in the soil.

키워드

과제정보

This research was supported by the National Nature Science Foundation of China (Nos. 42071100, 41971095).

참고문헌

  1. Aydemir, M.E. (2013), "Soil structure interaction effects on structural parameters for stiffness degrading systems built on soft soil sites", Struct. Eng. Mech., 45(5), 655-676. https://doi.org/10.12989/sem.2013.45.5.655.
  2. Biggar, K.W. and Kong, V. (2001), "An analysis of long-term pile load tests in permafrost from the Short Range Radar site foundations", Can. Geotech. J., 38(3), 441-460. https://doi.org/10.1139/cgj-38-3-441.
  3. Caicedo, B. (2017), "Physical modelling of freezing and thawing of unsaturated soils", Geotechniq., 67(2), 106-126. https://doi.org/10.1680/jgeot.15.P.098.
  4. Cheng, G., Zhao, L., Li, R., Wu, X., Sheng, Y., Hu, G., Zou, D., Jin, H., Li, X. and Wu, Q. (2019), "Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau", Kexue Tongbao/Chinese Sci. Bull., 64(27), 2783-2795. https://doi.org/10.1360/TB-2019-0191.
  5. Choi, C.H. and Ko, S.G. (2011), "A study for predicting adfreeze bond strength from shear strength of frozen soil", J. Korean Geotech. Soc., 27(10), 13-23. https://doi.org/10.7843/kgs.2011.27.10.013.
  6. Chou, Y.L., Huang, S.Y., Sun, L.Y., Wang, L.J., Yue, G.D., Cao, W. and Sheng, Y. (2019), "Mechanical model of chlorine salinized soil-steel block interface based on freezing and thawing", Yantu Lixue/Rock Soil Mech., 40, 41-52. https://doi.org/10.16285/j.rsm.2018.1737.
  7. Desai, C.S., Zaman, M.M., Lightner, J.G. and Siriwardane, H.J. (1984), "Thin-layer element for interfaces and joints", Int. J. Numer. Anal. Meth. Geomech., 8(1), 19-43. https://doi.org/10.1002/nag.1610080103.
  8. Du, Y., Tang, L.Y., Yang, L.J., Wang, X. and Bai, M.M. (2019), "Interface characteristics of frozen soil-structure thawing process based on nuclear magnetic resonance", Yantu Gongcheng Xuebao/Chin. J. Geotech. Eng., 41(12), 2316-2322. https://doi.org/10.11779/CJGE201912017.
  9. Fakharian, K. and Vafaei, N. (2021), "Effect of density on skin friction response of piles embedded in sand by simple shear interface tests", Can. Geotech. J., 58(5), 619-636. https://doi.org/10.1139/cgj-2019-0243.
  10. Fujun, N., Jian, X., Zhanju, L., Qingbai, W. and Guodong, C. (2010), "Permafrost characteristics of the qinghai-tibet plateau and methods of roadbed construction of railway", Acta Geologica Sinica-English Ed., 82(5), 949-958. https://doi.org/10.1111/j.1755-6724.2008.tb00650.x.
  11. Ganjavi, B., Bararnia, M. and Hajirasouliha, I. (2018), "Seismic response modification factors for stiffness degrading soil-structure systems", Struct. Eng. Mech., 68(2), 159-170. https://doi.org/10.12989/sem.2018.68.2.159.
  12. GB/T50123 (1999), Standard for Soil Test Method, China Planning Press, Beijing.
  13. Hadi Sahlabadi, S., Bayat, M., Mousivand, M. and Saadat, M. (2021), "Freeze-thaw durability of cement-stabilized soil reinforced with polypropylene/basalt fibers", J. Mater. Civil Eng., 33(9), 04021232. https://doi.org/10.1061/(asce)mt.1943-5533.0003905.
  14. He, P.F., Ma, W., Mu, Y.H., Dong, J.H. and Huang, Y.T. (2020), "Experiment study on effects of freeze-thaw cycles on adfreezing strength at frozen soil-concrete interface", Yantu Gongcheng Xuebao/Chin. J. Geotech. Eng., 42(2). 299-307. https://doi.org/10.11779/CJGE202002011.
  15. Ko, S.G. and Choi, C.H. (2011), "Experimental study on adfreeze bond strength between frozen sand and aluminium with varying freezing temperature and vertical confining pressure", J. Korean Geotech. Soc., 27(9), 67-76. https://doi.org/10.7843/kgs.2011.27.9.067.
  16. Konrad, J.M. and Duquennoi, C. (1993), "A model for water transport and ice lensing in freezing soils", Water Resour. Res., 29(9), 3109-3124. https://doi.org/10.1029/93WR00773.
  17. Ladanyi, B. and Morel, J.F. (1990), "Effect of internal confinement on compression strength of frozen sand", Can. Geotech. J., 27(1), 8-18. https://doi.org/10.1139/t90-002.
  18. Lake, C.B., Yousif, M.A.M. and Jamshidi, R.J. (2017), "Examining freeze/thaw effects on performance and morphology of a lightly cemented soil", Cold Reg. Sci. Technol., 134, 33-44. https://doi.org/10.1016/j.coldregions.2016.11.006.
  19. Lei, X.Y. (1987), "Pore types of Chinese loess and its collapsibility", Scientia Sinica Chimica, 17(12), 1309-1316.
  20. Li, L. and Fall, M. (2021), "Shear behaviour of Canadian marine clay/geomembrane interface under freeze-thaw cycles", Environ. Geotech., 4(08), 246-254. https://doi.org/10.1680/jenge.15.00055.
  21. Li, L., Fall, M. and Fang, K. (2020), "Shear behavior at interface between compacted clay liner-geomembrane under freeze-thaw cycles", Cold Reg. Sci. Technol., 172, 103006. https://doi.org/10.1680/jenge.15.00055.
  22. Lin, C., Wang, G., Guan, C., Feng, D. and Zhang, F. (2023), "Experimental study on the shear characteristics of different pile-soil interfaces and the influencing factors", Cold Reg. Sci. Technol., 206, 103739. https://doi.org/10.1016/j.coldregions.2022.103739.
  23. Lu, Z., Xian, S., Yao, H., Fang, R. and She, J. (2019), "Influence of freeze-thaw cycles in the presence of a supplementary water supply on mechanical properties of compacted soil", Cold Reg. Sci. Technol., 157, 42-52. https://doi.org/10.1016/j.coldregions.2018.09.009.
  24. Nishimura, S. and Wang, J. (2019), "A simple framework for describing strength of saturated frozen soils as multi-phase coupled system", Geotechniq., 69(8), 659-671. https://doi.org/10.1680/jgeot.17.P.104.
  25. Niu, F., Cheng, G., Ni, W. and Jin, D. (2005), "Engineering-related slope failure in permafrost regions of the Qinghai-Tibet Plateau", Cold Reg. Sci. Technol., 42(3), 215-225. https://doi.org/10.1016/j.coldregions.2005.02.002.
  26. Roustaei, M., Eslami, A. and Ghazavi, M. (2015), "Effects of freeze-thaw cycles on a fiber reinforced fine grained soil in relation to geotechnical parameters", Cold Reg. Sci. Technol., 120, 127-137. https://doi.org/10.1016/j.coldregions.2015.09.011.
  27. Saberi, M., Annan, C.D. and Konrad, J.M. (2018), "On the mechanics and modeling of interfaces between granular soils and structural materials", Arch. Civil Mech. Eng., 18(4), 1562-1579. https://doi.org/10.1016/j.acme.2018.06.003.
  28. Sun, H. and Yang, P. (2015), "Monotonic shear mechanical characteristics of interface layers between frozen soil and structure", Electr. J. Geotech. Eng., 20(3), 1053-1066.
  29. Tang, L.Y., Wang, X., Qiu, P.Y. and Jin, L. (2020), "Study on shear performance of soil-rock mixture at the freezing-thawing interface in permafrost regions", Yantu Lixue/Rock Soil Mech., 41(10), 3225. https://doi.org/10.16285/j.rsm.2019.2165.
  30. Tang, Y.Q. and Yan, J.J. (2015)." "Effect of freeze-thaw on hydraulic conductivity and microstructure of soft soil in Shanghai area", Environ. Earth Sci., 73(11), 7679-7690. https://doi.org/10.1007/s12665-014-3934-x.
  31. Terzaghi, K. (1943), "Theoretical soil mechanics", https://doi.org/10.1002/9780470172766.
  32. Ueda, Y., Moriuchi, K. and Ohrai, T. (2004), "Influence of normal stress on the adfreeze interface on adfreeze shear strength of frozen soil", J. JPN Soc. Snow Ice, 66(2), 197-205. https://doi.org/10.5331/seppyo.66.197.
  33. Viklander, P. (1998), "Permeability and volume changes in till due to cyclic freeze/thaw", Can. Geotech. J., 35(3), 151-162. https://doi.org/10.1139/t98-015.
  34. Wang, S.J. and Chen, J.B. (2008), "Nonlinear analysis for dimensional effects of temperature field of highway embankment in permafrost regions on Qinghai-Tibet plateau", Yantu Gongcheng Xuebao/Chin. J. Geotech. Eng., 30(10), 1544-1549.
  35. Wang, Y., Li, X.S., Li, G., Zhang, Y. and Feng, J.C. (2014), "Experimental investigation into scaling models of methane hydrate reservoir", Appl. Energy, 115, 47-56. https://doi.org/10.1016/j.apenergy.2013.10.054.
  36. Wei, M., Fujun, N., Satoshi, A. and Dewu, J. (2006), "Slope instability phenomena in permafrost regions of Qinghai-Tibet Plateau, China", Landslid., 3(3), 260-264. https://doi.org/10.1007/s10346-006-0045-0.
  37. Zhao, L., Yang, P., Wang, J.G. and Zhang, L.C. (2014), "Impacts of surface roughness and loading conditions on cyclic direct shear behaviors of an artificial frozen silt-structure interface", Cold Reg. Sci. Technol., 106, 183-193. https://doi.org/10.1016/j.coldregions.2014.07.009.
  38. Zhao, L., Yang, P., Zhang, L.C. and Wang, J.G. (2017), "Cyclic direct shear behaviors of an artificial frozen soil-structure interface under constant normal stress and sub-zero temperature", Cold Reg. Sci. Technol., 133, 70-81. https://doi.org/10.1016/j.coldregions.2016.10.011.
  39. Zhu, M., Xie, G., Liu, L., Wang, R., Ruan, S., Yang, P. and Fang, Z. (2023), "Strengthening mechanism of granulated blast-furnace slag on the uniaxial compressive strength of modified magnesium slag-based cemented backfilling material", Proc. Saf. Environ. Protect., 174, 722-733. https://doi.org/10.1016/j.psep.2023.04.031.