DOI QR코드

DOI QR Code

Robust optimum design of MTMD for control of footbridges subjected to human-induced vibrations via the CIOA

  • Leticia Fleck Fadel Miguel (Department of Mechanical Engineering (DEMEC), Federal University of Rio Grande do Sul (UFRGS), Graduate Program in Mechanical Engineering (PROMEC), Graduate Program in Civil Engineering (PPGEC)) ;
  • Otavio Augusto Peter de Souza (Graduate Program in Civil Engineering (PPGEC), Federal University of Rio Grande do Sul (UFRGS))
  • Received : 2021.09.08
  • Accepted : 2023.04.20
  • Published : 2023.06.10

Abstract

It is recognized that the installation of energy dissipation devices, such as the tuned mass damper (TMD), decreases the dynamic response of structures, however, the best parameters of each device persist hard to determine. Unlike many works that perform only a deterministic optimization, this work proposes a complete methodology to minimize the dynamic response of footbridges by optimizing the parameters of multiple tuned mass dampers (MTMD) taking into account uncertainties present in the parameters of the structure and also of the human excitation. For application purposes, a steel footbridge, based on a real structure, is studied. Three different scenarios for the MTMD are simulated. The proposed robust optimization problem is solved via the Circle-Inspired Optimization Algorithm (CIOA), a novel and efficient metaheuristic algorithm recently developed by the authors. The objective function is to minimize the mean maximum vertical displacement of the footbridge, whereas the design variables are the stiffness and damping constants of the MTMD. The results showed the excellent capacity of the proposed methodology, reducing the mean maximum vertical displacement by more than 36% and in a computational time about 9% less than using a classical genetic algorithm. The results obtained by the proposed methodology are also compared with results obtained through traditional TMD design methods, showing again the best performance of the proposed optimization method. Finally, an analysis of the maximum vertical acceleration showed a reduction of more than 91% for the three scenarios, leading the footbridge to acceleration values below the recommended comfort limits. Hence, the proposed methodology could be employed to optimize MTMD, improving the design of footbridges.

Keywords

Acknowledgement

The authors acknowledge the financial support of Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES).

References

  1. Abe, M. and Fujino, Y. (1994), "Dynamic characterization of multiple tuned mass dampers and some design formulas", Earthq. Eng. Struct. Dyn., 23, 813-835. https://doi.org/10.1002/eqe.4290230802.
  2. ABNT NBR 7188 (2013), Road and Pedestrian Live Load on Bridges, Viaducts, Footbridges and Other Structures, Technical Standard, Associacao Brasileira de Normas Tecnicas, Rio de Janeiro, Brazil. (in Portuguese)
  3. Alizadeh, H. and Lavasani, H.H. (2020), "TMD parameters optimization in different-length suspension bridges using OTLBO algorithm under near and far-field ground motions", Earthq. Struct., 18(5), 625-635. https://doi.org/10.12989/eas.2020.18.5.625.
  4. Alshimmeri, A.J.H., Kontoni, D.P.N. and Ghamari, A. (2021), "Improving the seismic performance of reinforced concrete frames using an innovative metallic-shear damper", Comput. Concrete, 28(3), 275-287. https://doi.org/10.12989/cac.2021.28.3.275.
  5. Araz, O. and Kahya, V. (2020), "Series tuned mass dampers in vibration control of continuous railway bridges", Struct. Eng. Mech., 73(2), 133-141. https://doi.org/10.12989/sem.2020.73.2.133.
  6. Bachmann, H. and Ammann, W. (1987), Vibrations in Structures Induced by Man and Machine, IABSE-AIPC-IVBH, ETH-Honggerberg, CH-8093, Zurich, Switzerland.
  7. Bachmann, H., Ammann, W. J., Deischl, F., Eisenmann, J., Floegl, I., Hirsch, G. H., ... & Steinbeisser, L. (1995), Vibrations Problems in Structures: Practical Guidelines, Basel, Boston, Berlin, Birkhauser.
  8. Brandao, F. da S. and Miguel, L.F.F. (2020), "Vibration control in buildings under seismic excitation using optimized tuned mass dampers", Frattura ed Integrita Strutturale, 14(54), 66-87. https://doi.org/10.3221/IGF-ESIS.54.05.
  9. Brandao, F. da S., de Almeida, A.A. and Miguel, L.F.F. (2022), "Optimum design of single and multiple tuned mass dampers for vibration control in buildings under seismic excitation", Int. J. Struct. Stab. Dyn., 22(08), 2250078. https://doi.org/10.1142/S021945542250078X.
  10. Brito, J.W.S. and Miguel, L.F.F. (2022), "Optimization of a reinforced concrete structure subjected to dynamic wind action", Frattura ed Integrita Strutturale, 16(59), 326-343. https://doi.org/10.3221/IGF-ESIS.59.22.
  11. BSI (2006), Steel, Concrete and Composite Bridges. Part 2: Specification for Loads, Appendix B: Vibration Serviceability Requirements for Foot and Cycle Track Bridges (BS 5400: Part 2: 2006), British Standards Institution, London, UK.
  12. Caetano, E., Cunha, A., Moutinho, C. and Magalhaes, F. (2010), "Studies for controlling human-induced vibration of the Pedro e Ines footbridge, Portugal. Part 2: Implementation of tuned mass dampers", Eng. Struct., 32(4), 1082-1091. https://doi.org/10.1016/j.engstruct.2009.12.033.
  13. Carmona, J.E.C., Avila, S.M. and Doz, G. (2017), "Proposal of a tuned mass damper with friction damping to control excessive floor vibrations", Eng. Struct., 148, 81-100. https://doi.org/10.1016/j.engstruct.2017.06.022.
  14. CEN (2002), Basis of Structural Design, Eurocode 0 EN1990 Annex A2, European Committee for Standardization, Brussels, Belgium.
  15. Chen, G. and Wu, J. (2003), "Experimental study on multiple tuned mass dampers to reduce seismic responses of a three-storey building structure", Earthq. Eng. Struct. Dyn., 32(5), 793-810. https://doi.org/10.1002/eqe.249.
  16. Colherinhas, G.B., Petrini, F., de Morais, M.V.G. and Bontempi, F. (2021), "Optimal design of passive-adaptive pendulum tuned mass damper for the global vibration control of offshore wind turbines", Wind Energy, 24(6), 573-595. https://doi.org/10.1002/we.2590.
  17. Curadelli, R.O. and Riera, J.D. (2004), "Reliability based assessment of the effectiveness of metallic dampers in buildings under seismic excitations", Eng. Struct., 26(13), 1931-1938. https://doi.org/10.1016/j.engstruct.2004.07.004.
  18. Daniel, Y., Lavan, O. and Levy, R. (2012), "Multiple-tuned mass dampers for multimodal control of pedestrian bridges", J. Struct. Eng., 138, 1173-1178. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000527.
  19. De Angelis, M., Petrini, F. and Pietrosanti, D. (2021), "Optimal design of the ideal grounded tuned mass damper inerter for comfort performances improvement in footbridges with practical implementation considerations", Struct. Control Hlth. Monit., 28(9), e2800. https://doi.org/10.1002/stc.2800.
  20. Den Hartog, J.P. (1956), Mechanical Vibration, McGraw-Hill, 4th Edition, New York.
  21. Fadel Miguel, L.F., Lopez, R.H. and Miguel, L.F.F. (2013a), "Discussion of paper: Estimating optimum parameters of tuned mass dampers using harmony search [Eng. Struct. 33(9) (2011) 2716-2723]", Eng. Struct., 54, 262-264. https://doi.org/10.1016/j.engstruct.2013.03.042.
  22. Fadel Miguel, L.F., Lopez, R.H. and Miguel, L.F.F. (2013b), "Multimodal size, shape, and topology optimisation of truss structures using the Firefly algorithm", Adv. Eng. Softw., 56, 23-37. https://doi.org/10.1016/j.advengsoft.2012.11.006.
  23. Fadel Miguel, L.F., Lopez, R.H., Miguel, L.F.F. and Torii, A.J. (2016a), "A novel approach to the optimum design of MTMDs under seismic excitations", Struct. Control Hlth. Monit., 23(11), 1290-1313. https://doi.org/10.1002/stc.1845.
  24. Fadel Miguel, L.F., Lopez, R.H., Torii, A.J., Miguel, L.F.F. and Beck, A.T. (2016b), "Robust design optimization of TMDs in vehicle-bridge coupled vibration problems", Eng. Struct., 126, 703-711. https://doi.org/10.1016/j.engstruct.2016.08.033.
  25. Farhangdoust, S., Eghbali, P. and Younesian, D. (2020), "Bistable tuned mass damper for suppressing the vortex induced vibrations in suspension bridges", Earthq. Struct., 18(3), 313-320. https://doi.org/10.12989/eas.2020.18.3.313.
  26. Fiebig, W. (2010), "Reduction of vibrations of pedestrian bridges using tuned mass dampers (TMD)", Arch. Acoust., 35(2), 165-174. https://doi.org/10.2478/v10168-010-0015-3.
  27. Garcia-Troncoso, N., Ruiz-Teran, A. and Stafford, P.J. (2020), "Attenuation of pedestrian-induced vibrations in girder footbridges using tuned-mass dampers", Adv. Bridge Eng., 1, 14. https://doi.org/10.1186/s43251-020-00013-8.
  28. Henao-Leon, D., Miguel, L.F.F. and Villalba-Morales, J.D. (2023), "A proposal for the optimization of the geometric configuration of a hollow cylindrical steel damper with slots", J. Brazil. Soc. Mech. Sci. Eng., 45, 152. https://doi.org/10.1007/s40430-022-03919-8.
  29. Igusa, T. and Xu, K. (1994), "Vibration control using multiple tuned mass dampers", J. Sound Vib., 175(4), 491-503. https://doi.org/10.1006/jsvi.1994.1341.
  30. Jimenez-Alonso, J.F. and Saez, A. (2018), "Motion-based design of TMD for vibrating footbridges under uncertainty conditions", Smart Struct. Syst., 21(6), 727-740. https://doi.org/10.12989/sss.2018.21.6.727.
  31. Jimenez-Alonso, J.F., Naranjo-Perez, J., Diaz, I.M. and Saez, A. (2020), "Motion-based design of vibrating civil engineering structures under uncertainty conditions", Struct. Concrete, 21(6), 2339-2352. https://doi.org/10.1002/suco.201900537.
  32. Kareem, A. and Kline, S. (1995), "Performance of multiple mass dampers under random loading", J. Struct. Eng., 121(2), 348-361. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:2(348).
  33. Kontoni, D.P.N. and Farghaly, A.A. (2019a), "The effect of base isolation and tuned mass dampers on the seismic response of RC high-rise buildings considering soil-structure interaction", Earthq. Struct., 17(4), 425-434. https://doi.org/10.12989/eas.2019.17.4.425.
  34. Kontoni, D.P.N. and Farghaly, A.A. (2019b), "Mitigation of the seismic response of a cable-stayed bridge with soil-structure-interaction effect using tuned mass dampers", Struct. Eng. Mech., 69(6), 699-712. https://doi.org/10.12989/sem.2019.69.6.699.
  35. Krenk, S., Bronden, A. and Kristensen, A. (2005). "Placement and tuning of resonance dampers on footbridges", Footbridge 2005: 2nd International Conference, University Iuav, Venice, Italy.
  36. Marano, G.C. and Quaranta, G. (2009), "Robust optimum criteria for tuned mass dampers in fuzzy environments", Appl. Soft Comput., 9(4), 1232-1243. https://doi.org/10.1016/j.asoc.2009.03.010.
  37. Marian, L. and Giaralis, A. (2014), "Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems", Probab. Eng. Mech., 38, 156-164. https://doi.org/10.1016/j.probengmech.2014.03.007.
  38. Miguel, L.F.F. and Fadel Miguel, L.F. (2012), "Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms", Exp. Syst. Appl., 39(10), 9458-9467. https://doi.org/10.1016/j.eswa.2012.02.113.
  39. Miguel, L.F.F. and Santos, G.P. (2021), "Optimization of multiple tuned mass dampers for road bridges taking into account bridge-vehicle interaction, random pavement roughness, and uncertainties", Shock Vib., 2021, Article ID 6620427. https://doi.org/10.1155/2021/6620427.
  40. Miguel, L.F.F., Fadel Miguel, L.F. and Lopez, R.H. (2014), "Robust design optimization of friction dampers for structural response control", Struct. Control Hlth. Monit., 21(9), 1240-1251. https://doi.org/10.1002/stc.1642.
  41. Miguel, L.F.F., Fadel Miguel, L.F. and Lopez, R.H. (2015), "A firefly algorithm for the design of force and placement of friction dampers for control of man-induced vibrations in footbridges", Optim. Eng., 16(3), 633-661. https://doi.org/10.1007/s11081-014-9269-3.
  42. Miguel, L.F.F., Fadel Miguel, L.F. and Lopez, R.H. (2016a), "Simultaneous optimization of force and placement of friction dampers under seismic loading", Eng. Optim., 48(4), 582-602. https://doi.org/10.1080/0305215X.2015.1025774.
  43. Miguel, L.F.F., Fadel Miguel, L.F. and Lopez, R.H. (2016b), "Failure probability minimization of buildings through passive friction dampers", Struct. Des. Tall Spec. Build., 25(17), 869-885. https://doi.org/10.1002/tal.1287.
  44. Miguel, L.F.F., Fadel Miguel, L.F. and Lopez, R.H. (2018), "Methodology for the simultaneous optimization of location and parameters of friction dampers in the frequency domain", Eng. Optim., 50(12), 2108-2122. https://doi.org/10.1080/0305215X.2018.1428318.
  45. Mirzai, N.M., Zahrai, S.M. and Bozorgi, F. (2017), "Proposing optimum parameters of TMDs using GSA and PSO algorithms for drift reduction and uniformity", Struct. Eng. Mech., 63(2), 147-160. https://doi.org/10.12989/sem.2017.63.2.147.
  46. Nishihara, O. and Asami, T. (2002), "Closed-form solutions to the exact optimizations of dynamic vibration absorbers (Minimizations of the maximum amplitude magnification factors)", J. Vib. Acoust., 124(4), 576-582. https://doi.org/10.1115/1.1500335.
  47. Ontiveros-Perez, S.P. and Miguel, L.F.F. (2022), "Reliability-based optimum design of multiple tuned mass dampers for minimization of the probability of failure of buildings under earthquakes", Struct., 42, 144-159. https://doi.org/10.1016/j.istruc.2022.06.015.
  48. Ontiveros-Perez, S.P., Miguel, L.F.F. and Riera, J.D. (2019), "Reliability-based optimum design of passive friction dampers in buildings in seismic regions", Eng. Struct., 190, 276-284. https://doi.org/10.1016/j.engstruct.2019.04.021.
  49. Patil, V.B. and Jangid, R.S. (2011), "Optimum multiple tuned mass dampers for wind excited benchmark building", J. Civil Eng. Manage., 17(4), 540-557. https://doi.org/10.3846/13923730.2011.619325.
  50. Ramos-Moreno, C., Ruiz-Teran, A.M. and Stafford, P.J. (2021), "Impact of stochastic representations of pedestrian actions on serviceability response", Proc. Inst. Civil Eng.-Bridge Eng., 174(2), 113-128. https://doi.org/10.1680/jbren.19.00050.
  51. Rana, R. and Soong, T.T. (1998), "Parametric study and simplified design of tuned mass dampers", Eng. Struct., 20(3), 193-204. https://doi.org/10.1016/S0141-0296(97)00078-3.
  52. Rao, S.S. (2004), Mechanical Vibrations, 4th Edition, Pearson Prentice Hall, New Jersey.
  53. Rossato, B.B. and Miguel, L.F.F. (2023), "Robust optimum design of tuned mass dampers for high-rise buildings subject to wind-induced vibration", Numer. Algebra, Control Optim., 13(1), 154-168. https://doi.org/10.3934/naco.2021060.
  54. Soong, T.T. and Dargush, G.F. (1997), Passive Energy Dissipation Systems in Structural Engineering, John Wiley & Sons, Chichester, NY.
  55. Souza, O.A.P. (2021), "Elaboracao de um algoritmo de otimizacao aplicado a engenharia estrutural: Circle-Inspired Optimization Algorithm (CIOA)", Master Dissertation, Graduate Program in Civil Engineering (PPGEC), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil,
  56. Souza, O.A.P. and Miguel, L.F.F. (2022), "CIOA: Circle-inspired optimization algorithm, an algorithm for engineering optimization", SoftwareX, 19, 101192. https://doi.org/10.1016/j.softx.2022.101192.
  57. Van Nimmen, K., Verbeke, P., Lombaert, G., De Roeck, G. and Van den Broeck, P. (2016), "Numerical and experimental evaluation of the dynamic performance of a footbridge with tuned mass dampers", J. Bridge Eng., 21(8), C4016001. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000815.
  58. Varela, W.D. and Battista, R.C. (2011), "Control of vibrations induced by people walking on large span composite floor decks", Eng. Struct., 33(9), 2485-2494. https://doi.org/10.1016/j.engstruct.2011.04.021.
  59. Vellar, L.S., Ontiveros-Perez, S.P., Miguel, L.F.F. and Fadel Miguel, L.F. (2019), "Robust optimum design of multiple tuned mass dampers for vibration control in buildings subjected to seismic excitation", Shock Vib., 2019, Article ID 9273714. https://doi.org/10.1155/2019/9273714.
  60. Wang, D., Wu, C., Zhang, Y. and Li, S. (2019), "Study on vertical vibration control of long-span steel footbridge with tuned mass dampers under pedestrian excitation", J. Constr. Steel Res., 154, 84-98. https://doi.org/10.1016/j.jcsr.2018.11.021.
  61. Warburton, G.B. (1982), "Optimum absorbers parameters for various combinations of response and excitation", Earthq. Eng. Struct. Dyn., 10(3), 381-401. https://doi.org/10.1002/eqe.4290100304.
  62. Yamaguchi, H. and Harnpornchai, N. (1993), "Fundamental characteristics of multiple tuned mass dampers for suppressing harmonically forced oscillations", Earthq. Eng. Struct. Dyn., 22(1), 51-62. https://doi.org/10.1002/eqe.4290220105.
  63. Yang, X.S. (2008), Nature-Inspired Metaheuristic Algorithms, 1st Edition, Luniver Press, UK.
  64. Yang, X.S. (2010), Nature-Inspired Metaheuristic Algorithms, 2nd Edition, Luniver Press, UK.
  65. Zang, C., Friswell, M.I. and Mottershead, J.E. (2005), "A review of robust optimal design and its application in dynamics", Comput. Struct., 83(4-5), 315-326. https://doi.org/10.1016/j.compstruc.2004.10.007.
  66. Zivanovic, S., Pavic, A. and Ingolfsson, E.T. (2010), "Modeling spatially unrestricted pedestrian traffic on footbridges", J. Struct. Eng., 136(10), 1296-1308. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000226.
  67. Zivanovic, S., Pavic, A. and Reynolds, P. (2005), "Vibration serviceability of footbridges under human-induced excitation: a literature review", J. Sound Vib., 279(1-2), 1-74. https://doi.org/10.1016/j.jsv.2004.01.019.
  68. Zivanovic, S., Pavic, A. and Reynolds, P. (2007), "Probability-based prediction of multi-mode vibration response to walking excitation", Eng. Struct., 29(6), 942-954. https://doi.org/10.1016/j.engstruct.2006.07.004.