DOI QR코드

DOI QR Code

Effects of particle size and loading rate on the tensile failure of asphalt specimens based on a direct tensile test and particle flow code simulation

  • Q. Wang (School of Highway, Henan College of Transportation) ;
  • D.C. Wang (School of Civil Engineering and Transportation, North China University of Water Resources and Electric Power) ;
  • J.W. Fu (School of Civil Engineering and Transportation, North China University of Water Resources and Electric Power) ;
  • Vahab Sarfarazi (Department of Mining Engineering, Hamedan University of Technology) ;
  • Hadi Haeri (Department of Mining Engineering, Higher Education Complex of Zarand, Shahid Bahonar University of Kerman) ;
  • C.L. Guo (China Railway 14th Bureau Group Tunnel Engineering Co. LTD.) ;
  • L.J. Sun (China Railway 14th Bureau Group Tunnel Engineering Co. LTD.) ;
  • Mohammad Fatehi Marji (Department of Mine Exploitation Engineering, Faculty of Mining and Metallurgy, Institute of Engineering, Yazd University)
  • 투고 : 2022.02.27
  • 심사 : 2023.04.24
  • 발행 : 2023.06.10

초록

This study, it was tried to evaluate the asphalt behavior under tensile loading conditions through indirect Brazilian and direct tensile tests, experimentally and numerically. This paper is important from two points of view. The first one, a new test method was developed for the determination of the direct tensile strength of asphalt and its difference was obtained from the indirect test method. The second one, the effects of particle size and loading rate have been cleared on the tensile fracture mechanism. The experimental direct tensile strength of the asphalt specimens was measured in the laboratory using the compression-to-tensile load converting (CTLC) device. Some special types of asphalt specimens were prepared in the form of slabs with a central hole. The CTLC device is then equipped with this specimen and placed in the universal testing machine. Then, the direct tensile strength of asphalt specimens with different sizes of ingredients can be measured at different loading rates in the laboratory. The particle flow code (PFC) was used to numerically simulate the direct tensile strength test of asphalt samples. This numerical modeling technique is based on the versatile discrete element method (DEM). Three different particle diameters were chosen and were tested under three different loading rates. The results show that when the loading rate was 0.016 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis till coalescence to the model boundary. When the loading rate was 0.032 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis. The branching occurs in these cracks. This shows that the crack propagation is under quasi-static conditions. When the loading rate was 0.064 mm/sec, mixed tensile and shear cracks were initiated below the loading walls and branching occurred in these cracks. This shows that the crack propagation is under dynamic conditions. The loading rate increases and the tensile strength increases. Because all defects mobilized under a low loading rate and this led to decreasing the tensile strength. The experimental results for the direct tensile strengths of asphalt specimens of different ingredients were in good accordance with their corresponding results approximated by DEM software.

키워드

과제정보

This work was financially supported by National Natural Science Foundation of China (Grant No. 51608117) and High foreign country expert project in Henan province (Grant No. HNGD2022040).

참고문헌

  1. Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech., 54(1), 69-85. https://doi.org/10.12989/sem.2015.54.1.069.
  2. Ahmedzade, P., Alatas, T. and Geckil, T. (2007), "The effect of carbon black on the mechanical properties of asphalt mixtures", J. Eng. Nat. Sci., 25(2), 179-189.
  3. Ahmedzade, P., Alqudah, O., Gunay, T. and Geckil, T. (2022), "Effects of gilsonite on performance properties of bitumen", Teknik Dergi, 33(2), 11779-11798. https://doi.org/10.18400/tekderg.783300.
  4. Akbardoost, J., Ghadirian H.R. and Sangsefidi, M. (2017), "Calculation of the crack tip parameters in the holed cracked flattened Brazilian disk (HCFBD) specimens under wide range of mixed mode I/II loading", Fatig. Fract. Eng. Mater. Struct., 40(9), 1416-1427. https://doi.org/10.1111/ffe.12585.
  5. Akbas, S. (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 66-78. https://doi.org/10.12989/sem.2016.59.3.066.
  6. Al-Qadi, IL, Elseifi, M. and Carpenter, S.H. (2007), "Reclaimed asphalt pavement-A literature review", Illinois Center for Transportation Series No. 07-001, UILU-ENG-2007-2014.
  7. Apeagyei, A.K., Diefenderfer, B.K. and Diefenderfer, S.D. (2011), "Rutting resistance of asphalt concrete mixtures that contain recycled asphalt pavement", Transp. Res. Record, 2208(1), 9-16. https://doi.org/10.3141/2208-02.
  8. ASTMD6931-17 (2017), Standard Test Method for Indirect Tensile (IDT) Strength of Asphalt Mixtures, ASTM International: West Conshohocken, PA, USA.
  9. Basu, B.D. et al. Proceedings 3rd APCOM, the Australasian Institute of Mining and Metallurgy.
  10. Bocci, M. and Giuliani, F. (1998), "Caratterizzazione di filler per conglomerati bituminosi", Proceedings of the XXIII Convegno Nazionale Stradale AIPCR, Verona, Italy.
  11. Chen, M., Lin, J., Wua, S. and Liu, C. (2011), "Utilization of recycled brick powder as alternative filler in asphalt mixture", Constr. Build. Mater., 25, 1532-1536. https://doi.org/10.1016/j.conbuildmat.2010.08.005.
  12. Chong, K.P. and Kuruppu, M.D. (1984), "New specimen for fracture toughness determination for rock and other materials", Int. J. Fract., 26, 59-62. https://doi.org/10.1007/BF01157555.
  13. Colbert, B. and You, Z. (2012), "The determination of mechanical performance of laboratory produced hot mix asphalt mixtures using controlled RAP and virgin aggregate size fractions", Constr. Build. Mater., 26, 655-662. https://doi.org/10.1016/j.conbuildmat.2011.06.068.
  14. Geckil, T., Ince, C.B. and Tanyildizi, M.M. (2022a), "Physical, rheological and microstructural properties of waste LDPE and TEOA modified bitumens", J. Chin. Inst. Eng., 45(6), 477-487. https://doi.org/10.1080/02533839.2022.2078416.
  15. Geckil, T., Sarici, T. and Ok, B. (2022b), "Model studies on recycled whole rubber tyre reinforced granular fillings on weak soil", Revista de la Construccion, 21(2), 264-280. http://dx.doi.org/10.7764/rdlc.21.2.264 .
  16. Golewski, G. (2019), "A new principles for implementation and operation of foundations for machines: A review of recent advances", Struct. Eng. Mech., 71(3), 317-327. https://doi.org/10.12989/sem.2019.71.3.317.
  17. Guo, H., Aziz, N.I. and Schmidt, L.C. (1993), "Rock fracture-toughness determination by the Brazilian test", Eng. Geol., 33(3), 177-188. https://doi.org/10.1016/0013-7952(93)90056-I.
  18. Haeri, H. and Sarfarazi, V. (2016), "Suggesting a new testing device for determination of tensile strength of concrete", Struct. Eng. Mech., 60(6), 939-952. https://doi.org/10.12989/sem.2016.60.6.939.
  19. Haeri, H., Sarfarazi, V., Yazdani, M., Bagher Shemirani, A. and Hedayat. A. (2018), "Experimental and numerical investigation of the center-cracked horseshoe disk method for determining the mode i fracture toughness of rock-like material", Rock Mech Rock Eng., 51, 173-185. https://doi.org/10.1007/s00603-017-1310-3.
  20. Hu, J., Liu, P., Wang, D., Oeser, M. and Tan, Y. (2016), "Investigation on fatigue damage of asphalt mixture with different air-voids using microstructural analysis", Constr. Build. Mater., 125, 936-945. https://doi.org/10.1016/j.conbuildmat.2016.08.138.
  21. Huang, Y.G., Wang, L.G. and Chen, J.R. (2015), "Theoretical analysis of flattened Brazilian indirect tensile test for determining tensile strength of rocks", Rock Soil Mech., 36(03), 739-748. https://doi.org/10.16285/j.rsm.2015.03.018.
  22. Hussaina, A. and Yanjuna, Q. (2013), "Effect of reclaimed asphalt pavement on the properties of asphalt binders", Southwest Jiao Tong University (SWJTU), Chengdu, P.R. China.
  23. Ince, C.B. and Geckil, T. (2022), "Effects of recycled PET and TEOA on performance characteristics of bitumen", Gradevinar, 74(2), 105-114. https://doi.org/10.14256/JCE.3358.2021.
  24. Katkhuda, H.N., Shatarat, N.K. and Hyari, K.H. (2017), "Effect of silica fume on mechanical properties of concrete containing recycled asphalt pavement", Struct. Eng. Mech., 62(3), 357-364. https://doi.org/10.12989/sem.2017.62.3.357.
  25. Kuruppu, M.D. (1998), "Stress intensity factors of chevron-notched semicircular specimens", APCOM 98: Computer Applications in the Mineral Industries International Symposium, 111-112.
  26. Liu, X. (2020), "Experimental and numerical study on pre-peak cyclic shear mechanism of artificial rock joints", Struct. Eng. Mech., 74(3), 221-234. https://doi.org/10.12989/sem.2020.74.3.221.
  27. Miro, R., Valdes, G., Martinez, A., Segura, P. and Rodriguez, C. (2011), "Evaluation of high modulus mixture behavior with high reclaimed asphalt pavement (RAP) percentages for sustainable road construction", Constr. Build. Mater., 25(10), 3854-3862. https://doi.org/10.1016/j.conbuildmat.2011.04.006.
  28. Ozdemir, M.E. and Yaylaci, M. (2023), "Research of the impact of material and flow properties on fluid-structure interaction in cage systems", Wind Struct., 36(1), 31-40. https://doi.org/10.12989/was.2023.36.1.031.
  29. Pan, B., Gao, Y. and Zhong, Y. (2014), "Theoretical analysis of overlay resisting crack propagation in old cement concrete pavement", Struct. Eng. Mech., 52(4) 167-181. https://doi.org/10.12989/sem.2014.52.4.167.
  30. Parra, C., Valcuende, M. and Gomez, F. (2011), "Indirect tensile strength and moduli of elasticity of self-compacting concrete", Constr. Build. Mater., 25, 201-207. https://doi.org/10.1016/j.conbuildmat.2011.03.033.
  31. Pasetto, M. and Baldo, N. (2016), "Recycling of waste aggregate in cement bound mixtures for road pavement bases and subbases", Constr. Build. Mater., 108, 112-118. https://doi.org/10.1016/j.conbuildmat.2016.01.023.
  32. Potyondy, D.O. (2012), "A flat-jointed bonded-particle material for hard rock", Proceedings of the 46th U.S. Rock Mechanics/Geomechanics Symposium, Chicago, USA.
  33. Potyondy, D.O. (2015), "The bonded-particle model as a tool for rock mechanics research and application: Current trends and future directions", Geosyst. Eng., 18(1), 1-28. https://doi.org/10.1080/12269328.2014.998346.
  34. Potyondy, D.O. (2017), "Simulating perforation damage with a flat-jointed bonded-particle material", Proceedings of the 51st US Rock Mechanics/Geomechanics Symposium, San Francisco, California, USA.
  35. Sangiorgi, C., Tataranni, P., Simone, A., Vignali, V., Lantieri, C. and Dondi, G. (2016), "Assessment of waste bleaching clay as alternative filler for the production of porous asphalts", Constr. Build. Mater., 109, 1-7. https://doi.org/10.1016/j.conbuildmat.2016.01.052.
  36. Shatarat, N.K., Katkhuda, H.N., Hyari, K.H. and Asi, I. (2018). Effect of using recycled coarse aggregate and recycled asphalt pavement on the properties of pervious concrete", Struct. Eng. Mech., 67(3), 283-290. https://doi.org/10.12989/sem.2018.67.3.283.
  37. Sheng, Y., Zhang, B., Yan, Y., Chen, H., Xiong, R. and Geng, J. (2017), "Effects of phosphorus slag powder and polyester fiber on performance characteristics of asphalt binders and resultant mixtures", Constr. Build. Mater., 141, 289-295. https://doi.org/10.1016/j.conbuildmat.2017.02.141.
  38. Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panels-experiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 739-760. https://doi.org/10.12989/cac.2016.17.6.739.
  39. Simone, A., Mazzotta, F., Eskandarsefat, S., Sangiorgi, C., Vignali, V., Lantieri, C. and Dondi, G. (2017), "Experimental application of waste glass powder filler in recycled dense-graded asphalt mixtures", Road Mater. Pavem. Des., 1-16. https://doi.org/10.1080/14680629.2017.1407818.
  40. Teshale, E., Moon, K., Turos, M., Clyne, T. and Marasteanu, M. (2012), "Low temperature fracture properties of polyphosphoric acid modified asphalt mixtures", J. Mater. Civil Eng., 24, 1089-96. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000488.
  41. Veropalumbo, R., Viscione, N. and Formisano, A. (2018), "Hot mix asphalt with fly ashes for dense-graded surface Layers of rural roads", WIT Trans. Ecology Environ., 215, 93-105. https://doi.org/10.2495/EID180091
  42. Yaylaci, E.U., Oner, E.,Yaylaci, M., Ozdemir, M.E., Abushattal A. and Birinci, A. (2022b), "Application of artificial neural networks in the analysis of the continuous contact problem", Struct. Eng. Mech., 84(1), 35-48. https://doi.org/10.12989/sem.2022.84.1.035.
  43. Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban D.M. and Birinci, A. (2022c), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/scs.2022.43.5.661.
  44. Yaylaci, M.,Yaylaci, E.U., Ozdemir, M.E., Ozturk, S. and Sesli, H. (2023), "Vibration and buckling analyses of FGM beam with edge crack: Finite element and multilayer perceptron methods", Steel Compos. Struct., 46(4), 565-575. https://doi.org/10.12989/scs.2023.46.4.565.
  45. Yaylaci, M., Yaylaci, E.U., Ozdemir, M.E., Ay, S. and Ozturk, S. (2022a), "Implementation of finite element and artificial neural network methods to analyze the contact problem of a functionally graded layer containing crack", Steel Compos. Struct., 45(4), 501-511. https://doi.org/10.12989/scs.2022.45.4.501.
  46. Ye, J.H., Yang, Y. and Chang, Z.H. (2009), "Airy stress function method for analytic solution of stress field during Brazilian disc test", J. Eng. Geol., 17(4), 528-532.
  47. Zhou, Y.X., Xia, K., Li, X.B., Li, H.B., Ma, G.W., Zhao, J., Zhou, Z.L. and Dai, F. (2012), "Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials", Int. J. Rock Mech. Min. Sci., 49, 105-112. https://doi.org/10.1007/978-3-319-07713-0_3.