Acknowledgement
본 연구는 원자력안전위원회의 재원으로 한국원자력안전재단의 지원을 받아 수행한 원자력안전연구 원자력안전규제기술개발 사업의 연구결과입니다(No. 2106022).
References
- Deshon, J., 2006, "Evaluation of Fuel Cladding Corrosion and Corrosion Product Deposits from Callaway Cycle 14," Electric Power Research Institute, Palo Alto, CA, 1013425.
- Deshon, J., 2011, "Simulated Fuel Crud Thermal Conductivity Measurements Under Pressurized Water Reactor Conditions," Electric Power Research Institute, Palo Alto, CA, 1022896.
- Yeon, J. W., Choi, I. K., Park, K. K., Kwon, H. M., and Song, K., 2010, "Chemical Analysis of Fuel CRUD Obtained from Korean Nuclear Power Plants," J NUCL MATER, Vol. 404, No. 2, pp. 160-164. doi:https://doi.org/10.1016/j.jnucmat.2010.07.024
- Hu, R., Kazimi, M. S., and Leyse, M. E., 2009, "Considering the Thermal Resistance of CRUD in LOCA Analysis," T AM NUCL SOC, Vol. 101, pp. 590-592.
- Yeo, D. and NO, H., 2017, "Modeling Heat Transfer Through Chimney-Structured Porous Deposit Formed in Pressurized Water Reactors," INT J HEAT MASS TRAN, Vol. 108, pp. 868-879. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.046
- Lee, J., Jeong, H., and Bang, Y., 2018, "Thermal Resistance Effects of CRUD and Oxide Layers to the Safety Analysis," Proc. Of Annual Topical Meeting on Reactor Fuel Performance, Prague, Czech Republic.
- Dumnernchanvanit, I., Zhang, N. Q., Robertson, S., Delmore, A., Carlson, M. B., Hussey, D., and Short, M. P., 2018, "Initial Experimental Evaluation of CRUD-resistant Materials for Light Water Reactors," J NUCL MATER, Vol. 498, pp. 1-8. doi:https://doi.org/10.1016/j.jnucmat.2017.10.010
- Baek, S. H., Shim, H. S., Kim, J. G., and Hur, D.H., 2018, "Effect of Chemical Etching of Fuel Cladding Surface on CRUD Deposition Behavior in Simulated Primary Water of PWRs at 328 ℃," ANN NUCL ENERGY, Vol. 116, pp. 69-77. doi:https://doi.org/10.1016/j.anucene.2018.02.030
- Baek, S. H., Shim, H. S., Kim, J. G., and Hur, D. H., 2019, "Effects of Heat Flux on Fuel CRUD Deposition and Sub-cooled Nucleate Boiling in Simulated PWR Primary Water at 13 MPa," ANN NUCL ENERGY, Vol. 133, pp. 178-185. doi:https://doi.org/10.1016/j.anucene.2019.05.022
- Kim, J. Y., Lee, Y., Kim, J., and Bang, I. C., 2022, "The DISNY Facility for Sub-cooled Flow Boiling Performance Analysis of CRUD Deposited Zirconium Alloy Cladding Under Pressurized Water Reactor Condition: Design, construction, and opeartion," NUCL ENG TECHNOL, Vol. 55, No. 9, pp. 3164-3182. doi:https://doi.org/10.1016/j.net.2023.06.006
- KINS, 2021, "MARS-KS Code Manual," Korea Institute of Nuclear Safety, Daejeon, KINS/RR-1822.
- Kingery, W. D., Francl, J., Coble, R. L., and Vasilos, T., 1954, "Thermal Conductivity: X, Data for Several Pure Oxide Materials Corrected to Zero Porosity," J AM CERAM SOC, Vol. 37, No. 2, pp. 107-111. https://doi.org/10.1111/j.1551-2916.1954.tb20109.x
- Nelson, A. T., White, J. T., Anderson, D. A., Aguiar, J. A., McClellan, K. J., Byler, D. D., Short, M. P., and Stanek, C. R., 2014, "Thermal Expansion, Heat Capacity and Thermal Conductivity of Nickel Ferrite (NiFe2O4)," J AM CERAM SOC, Vol. 97, No. 5, pp. 1559-1565. doi:https://doi.org/10.1111/jace.12901
- Noda, Y. and Naito, K., 1978, "The Thermal Conductivity and Diffusivity of MnxFe3-xO4 (0≤x≤1.5) from 200 to 700K," NETSUSOKUTEI, Vol. 5, No. 1, pp. 11-18.
- Prostakova, V., Chen, J., Jak, E., and Decterov, S.A., 2012, "Experimental Study and Thermodynamic Optimization of the CaO-NiO, MgO-NiO and NiO-SiO2 Systems," Computer Coupling of Phase Diagrams and Thermochemistry, Vol. 37, pp. 1-10. doi:https://doi.org/10.1016/j.calphad.2011.12.009
- NIST Chemistry WebBook, 2023, "https://webbook.nist.gov/", Chemistry WebBook, SRD 69.