DOI QR코드

DOI QR Code

A parametric investigation on effect of supporting arrangements on earth retention system

  • Ali Murtaza Rasool (National Engineering Services Pakistan (NESPAK)) ;
  • Fawad S. Niazi (Department of Civil and Mechanical Engineering, Purdue University) ;
  • Tauqir Ahmed (Department of Civil Engineering, National University of Computer and Emerging Sciences) ;
  • Mubashir Aziz (Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals)
  • Received : 2022.01.13
  • Accepted : 2023.04.18
  • Published : 2023.06.10

Abstract

The effects of various supporting arrangements have been investigated on an excavation support system using a numerical tool. The purpose of providing different supporting arrangements was to limit the pile wall deflection in the range of 0.5% to 1% of the excavation depth. Firstly, a deep excavation supported by sheet pile wall was modeled and the effects of sheet pile wall thickness, excavation depth and distance to adjacent footings from sheet pile wall face were explored on the soil deformation and wall deflection. Further analysis was performed considering six different arrangements of tieback anchors and struts in order to limit the wall deflections. Case-01 represents the basic excavation geometry supported by sheet pile wall only. In Case-02, sheet pile wall was supported by struts. Case-03 is a sheet pile wall supported by tieback anchors. Likewise, for the Cases 04, 05 and 06, different arrangements of struts and tieback anchors were used. Finally, the effects of different supporting arrangements on soil deformation, sheet pile wall deflection, bending moments and anchor forces have been presented.

Keywords

Acknowledgement

Researchers from National Engineering Services Pakistan (NESPAK) Lahore Pakistan, Purdue University, Fort Wayne USA, National University of Computer and Emerging Sciences Lahore Pakistan, and King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia are highly acknowledged for providing technical assistance.

References

  1. An, J.S., Yoon, Y.W. and Song, K.Il. (2018), "Feasibility study of an earth-retaining structure using in-situ soil with dual sheet piles", Geomech. Eng., 16(3), 321-329. https://doi.org/10.12989/gae.2018.16.3.321. 
  2. Bhatkar, T., Barman, D., Mandal, A. and Usmani, A. (2017), "Prediction of behaviour of a deep excavation in soft soil: a case study", Int. J. Geotech. Eng., 11(1), 10-19. https://doi.org/10.1080/19386362.2016.1177309 
  3. Chang-Yu, O., Dar-Chang, C. and Tzong-Shiann, W. (1996), "Three-dimensional finite element analysis of deep excavations", J. Geotech. Eng., 122(5), 337-345. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(337). 
  4. Chen, B., Yan, T., Song, D., Luo, R. and Zhang, G. (2021), "Experimental investigations on a deep excavation support system with adjustable strut length", Tunn. Undergr. Sp. Tech., 115, 104046. https://doi.org/10.1016/j.tust.2021.104046. 
  5. Cheng, X.S., Zheng, G., Diao, Y., Huang, T.M., Deng, C.H., Nie, D.Q. and Lei, Y.W. (2016), "Experimental study of the progressive collapse mechanism of excavations retained by cantilever piles", Can. Geotech. J., 54(4), 574-587. https://doi.org/10.1139/cgj-2016-0284. 
  6. Chowdhury, S.S., Deb, K. and Sengupta, A. (2017), "Estimation of "Design Parameters for Braced Excavation in Clays", Geotech. Geol. Eng., 35(2), 857-870. https://doi.org/10.1007/s10706-016-0123-6. 
  7. Cui, X., Ye, M. and Zhuang, Y. (2018), "Performance of a foundation pit supported by bored piles and steel struts: A case study", Soils Found., 58(4), 1016-1027. https://doi.org/10.1016/j.sandf.2018.05.004. 
  8. El Sawwaf, M. and Nazir, A.K. (2012), "The effect of deep excavation-induced lateral soil movements on the behavior of strip footing supported on reinforced sand", J. Adv. Res., 3(4), 337-344. https://doi.org/10.1016/j.jare.2011.11.001. 
  9. Elbaz, K., Shen, J.S., Arulrajah, A. and Horpibulsuk, S. (2016), "Geohazards induced by anthropic activities of geoconstruction: a review of recent failure cases", Arabian J. Geosci.s, 9(18), 708. https://doi.org/10.1007/s12517-016-2740-z. 
  10. Elbaz, K., Shen, S.L., Tan, Y. and Cheng, W.C. (2018), "Investigation into performance of deep excavation in sand covered karst: A case report", Soils Found., 58(4), 1042-1058. https://doi.org/10.1016/j.sandf.2018.03.012. 
  11. Fall, M., Gao, Z. and Ndiaye, B.C. (2019), "Three-dimensional response of double anchored sheet pile walls subjected to excavation and construction sequence", Heliyon, 5(3), e01348. https://doi.org/10.1016/j.heliyon.2019.e01348. 
  12. Farzi, M., Pakbaz, M.S. and Aminpour, H.A. (2018), "Selection of support system for urban deep excavations: A case study in Ahvaz geology", Case Studies in Constr. Mater., 8, 131-138. https://doi.org/10.1016/j.cscm.2018.01.004 
  13. FHA. (1998), Summary Report of Research on Permanent Ground Achor Walls, Volume III: Model-Scale Wall Tests and Ground Achor Tests. 
  14. Finno, R., Tanner, B. and Jill, R. (2007), "Three-dimensional effects for supported excavations in clay", J. Geotech. Geoenviron. Eng., 133(1), 30-36. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:1(30). 
  15. Fok, P., Neo, B.H., Goh, K.H. and Wen, D. (2012), "Assessing the impact of excavation-induced movements on adjacent buildings", The IES J. Part A: Civil & Struct. Eng., 5(3), 195-203. https://doi.org/10.1080/19373260.2012.696444. 
  16. Georgiadis, M. and Anagnostopoulos, C. (1999), "Displacement of structures adjacent to cantilever sheet pile walls", Soils Found., 39(2), 99-104. https://doi.org/10.3208/sandf.39.2_99. 
  17. Goh, A.T.C., Zhang, R.H., Wang, W., Wang, L., Liu, H.L. and Zhang, W.G. (2020), "Numerical study of the effects of groundwater drawdown on ground settlement for excavation in residual soils", Acta Geotechnica, 15(5), 1259-1272. https://doi.org/10.1007/s11440-019-00843-5. 
  18. Goh, A., Zhang, F., Zhang, W., Zhang, Y. and Liu, H. (2017), "A simple estimation model for 3D braced excavation wall deflection", Comput. Geotech., 83, 106-113. https://doi.org/10.1016/j.compgeo.2016.10.022 
  19. Goh, K.H. and Mair, R.J. (2014), "Response of framed buildings to excavation-induced movements", Soils Found., 54(3), 250-268. https://doi.org/10.1016/j.sandf.2014.04.002. 
  20. Hong, L., Wang, X. and Zhang, W. (2023), "Reliability-based robust geotechnical design of braced excavations considering multiple failure modes", Underground Sp., 9, 43-52. https://doi.org/10.1016/j.undsp.2022.06.002. 
  21. Hsieh, P.G., Ou, C.Y. and Lin, Y.L. (2013), "Three-dimensional numerical analysis of deep excavations with cross walls", Acta Geotechnica, 8(1), 33-48. https://doi.org/10.1007/s11440-012-0181-8. 
  22. Hsiung, B.C.B. and Dao, S.D. (2014), "Evaluation of constitutive soil models for predicting movements caused by a deep excavation in sands", Elec. J. Geotech. Eng., 19(5), 17325-17344. 
  23. Jasmine Nisha, J. and Muttharam, M. (2017), "Deep excavation supported by diaphragm wall: A case study", Indian Geotech. J., 47(3), 373-383. https://doi.org/10.1007/s40098-017-0230-1. 
  24. Korff, M., Mair, R.J. and Van Tol, F.A.F. (2016), "Pile-soil interaction and settlement effects induced by deep excavations", J. Geotech. Geoenviron. Eng., 142(8), 4016034. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001434. 
  25. Lam, S.Y., Haigh, S.K. and Bolton, M.D. (2014). "Understanding ground deformation mechanisms for multi-propped excavation in soft clay", Soils Found., 54(3), 296-312. https://doi.org/10.1016/j.sandf.2014.04.005. 
  26. Li, Y. and Zhang, W. (2020), "Investigation on passive pile responses subject to adjacent tunnelling in anisotropic clay", Comput. Geotech., 127, 103782. https://doi.org/10.1016/j.compgeo.2020.103782. 
  27. Li, Y., Zhang, W. and Zhang, R. (2022), "Numerical investigation on performance of braced excavation considering soil stress-induced anisotropy", Acta Geotechnica, 17(2), 563-575. https://doi.org/10.1007/s11440-021-01171-3. 
  28. Lim, A., Ou, C.Y. and Hsieh, P.G. (2010), "Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions", J. Geo Eng., 5(1), 9-20. https://doi.org/10.6310/jog.2010.5(1).2. 
  29. Michael, L. (2001), "Database for retaining wall and ground movements due to deep excavations", J. Geotech. Geoenviron. Eng., 127(3), 203-224. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:3(203). 
  30. Moormann, C. (2004), "Analysis of wall and ground movements due to deep excavations in soft soil based on a new worldwide database", Soils Found., 44(1), 87-98. https://doi.org/https://doi.org/10.3208/sandf.44.87. 
  31. Mu, L., Huang, M., Roodi, G.H. and Shi, Z. (2021), "Allowable wall deflection of braced excavation adjacent to pile-supported buildings", Geomech. Eng., 26(2), 161-173. https://doi.org/10.12989/gae.2021.26.2.161. 
  32. Obrzud, R.F. (2011), On the use of the Hardening Soil Small Strain model in geotechnical practice. 
  33. Ou, C.Y., Hsieh, P.G. and Chiou, D.C. (1993), "Characteristics of ground surface settlement during excavation", Can. Geotech. J., 30(5), 758-767. https://doi.org/10.1139/t93-068. 
  34. Plaxis3D. (2020), Plaxis Manual (CE v20). Plaxis.
  35. Poulos, H.G. and Chen, L.T. (1996), "Pile response due to unsupported excavation-induced lateral soil movement", Can. Geotech. J., 33(4), 670-677. https://doi.org/10.1139/cgj-33-4-670. 
  36. Ramadan, M.I., Ramadan, E.H. and Khashila, M.M. (2018), "Cantilever contiguous pile wall for supporting excavation in clay", Geotech. Geol. Eng., 36(3), 1545-1558. https://doi.org/10.1007/s10706-017-0407-5. 
  37. Rasool, A.M., Kuwano, J. and Tachibana, S. (2015), "Behavior of compacted unsaturated soil in isotropic compression, cyclic and monotonic shear loading sequences in undrained condition", Proceedings of the 6th Intl. Symp. on Def. Charac. of Geomat., January. https://doi.org/10.3233/978-1-61499-601-9-267. 
  38. Rasool, A.M., Kuwano, J. and Tachibana, S. (2020), "Experimental study on the response of unsaturated silt due to change in drainage conditions during the triaxial test process", Geotech. Geol. Eng., 38(2), 1707-1719. https://doi.org/10.1007/s10706-019-01125-3. 
  39. Saleem, M. (2015), "Application of numerical simulation for the analysis and interpretation of pile-anchor system failure", Geomech. Eng., 9(6), 689-707. https://doi.org/10.12989/gae.2015.9.6.689. 
  40. Singh, A.P. and Chatterjee, K. (2020), "Lateral earth pressure and bending moment on sheet pile walls due to uniform surcharge", Geomech. Eng., 23(1), 71-83. https://doi.org/10.12989/gae.2020.23.1.071. 
  41. Voottipruex, P., Jamsawang, P., Sukontasukkul, P., Jongpradist, P., Horpibulsuk, S. and Chindaprasirt, P. (2019), "Performances of SDCM and DCM walls under deep excavation in soft clay: Field tests and 3D simulations", Soils Found., 59(6), 1728-1739. https://doi.org/10.1016/j.sandf.2019.07.012. 
  42. Wu, J.T.H. and Tung, S.C.Y. (2020), "Determination of model parameters for the hardening soil model", Transport. Infrastruct. Geotech., 7(1), 55-68. https://doi.org/10.1007/s40515-019-00085-8. 
  43. Zhandos, O., Andrew, W. and Matthew, O. (2015), "Three-dimensional analyses of excavation support system for the stata center basement on the MIT campus", J. Geotech. Geoenviron. Eng., 141(7), 5015001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001326. 
  44. Zhang, R., Goh, A.T.C., Li, Y., Liu, H., Wang, L., Chen, Z. and Zhang, W. (2022), "A simple estimation model for basal heave stability of braced excavations in anisotropic clay", Acta Geotechnica, 17(12), 5789-5800. https://doi.org/10.1007/s11440-022-01542-4 
  45. Zhang, W., Li, Y., Goh, A.T.C. and Zhang, R. (2020), "Numerical study of the performance of jet grout piles for braced excavations in soft clay", Comput. Geotech., 124, 103631. https://doi.org/10.1016/j.compgeo.2020.103631.