참고문헌
- Alavi, A.H. and Gandomi, A.H. (2012), "Energy-based numerical models for assessment of soil liquefaction", Geosci. Front., 3(4), 541-555. https://doi.org/10.1016/j.gsf.2011.12.008.
- Ardakani, A. and Kohestani, V.R. (2015), "Evaluation of liquefaction potential based on CPT results using C4. 5 decision tree", J. AI Data Min., 3(1), 85-92. http://dx.doi.org/10.5829/idosi.JAIDM.2015.03.01.09
- Asteris, P.G., Nozhati, S., Nikoo, M. and Cavaleri, L. (2019), "Krill herd algorithm-based neural network in structural seismic reliability evaluation", Mech. Adv. Mater. Struct., 26(13), 1146-1153. https://doi.org/10.1080/15376494.2018.1430874.
- Baziar, M.H. and Jafarian, Y. (2007), "Assessment of liquefaction triggering using strain energy concept and ANN model capacity energy" Soil Dyn. Earthq. Eng., 27(12), 1056-1072. https://doi.org/10.1016/j.soildyn.2007.03.007.
- Berrill, J.B. and Davis, R.O. (1985), "Energy dissipation and seismic liquefaction of sands: revised model", Soils Found., 25(2), 106-118. https://doi.org/10.3208/sandf1972.25.2_106.
- Bolton Seed, H., Tokimatsu, K., Harder, L.F. and Chung, R.M. (1985), "Influence of SPT procedures in soil liquefaction resistance evaluations", J. Geotech. Eng., 111(12), 1425-1445. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:12(1425).
- Cetin, K.O., Seed, R.B., Der Kiureghian, A., Tokimatsu, K., Harder Jr, L.F., Kayen, R.E. and Moss, R.E. (2004), "Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential", J. Geotech. Geoenviron. Eng., 130(12), 1314-1340. https://doi.org/10.1061/(ASCE)10900241(2004)130:12(1314).
- Cetin, K.O., Seed, R.B., Kayen, R.E., Moss, R.E., Bilge, H.T., Ilgac, M. and Chowdhury, K. (2016), "Summary of SPT based field case history data of cetin (2016) database", METU/GTENG 08/16-01; Middle East Technical University.
- Davis, R.O., Berrill, J.B. (1982), "Energy dissipation and seismic liquefaction in sands", Earthq. Eng. Struct. D., 10(1), 59-68. https://doi.org/10.1002/ eqe.4290100105.
- Dobry, R., Ladd, R.S., Yokel, F.Y., Chung, R.M. and Powell, D. (1982), Prediction of Pore Water Pressure Buildup and Liquefaction of Sands During Earthquakes by the Cyclic Strain Method, 138(150), Gaithersburg, MD: National Bureau of Standards.
- Eseller-Bayat, E., Monkul, M.M, Akin, O. and Yenigun, S. (2019), "The coupled influence of relative density, CSR, plasticity and content of fines on cyclic liquefaction resistance of sands", J. Earthq. Eng., 23(6), 909-929. https://doi.org/10.1080/13632469.2017.1342297.
- Fardad, A.P. and Noorzad, R. (2018), "Energy-based evaluation of liquefaction of fiber-reinforced sand using cyclic triaxial testing", Soil Dyn. Earthq. Eng., 104, 45-53. https://doi.org/10.1016/j.soildyn.2017.09.026.
- Figueroa, J.L., Saada, A.S., Liang, L. and Dahisaria, N.M. (1994), "Evaluation of soil liquefaction by energy principles", J.of Geotechnical Engineering, 120(9), 1554-1569. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:9(1554)
- Gandomi, A.H. and Alavi, A.H. (2012), "Krill herd: a new bio-inspired optimization algorithm", Commun. Nonlinear Sci. Numer. Simul., 17(12), 4831-4845. https://doi.org/10.1016/j.cnsns.2012.05.010.
- Ghorbani, A. and Eslami, A. (2021), "Energy-based model for predicting liquefaction potential of sandy soils using evolutionary polynomial regression method", Comput. Geotech., 129, 103867.
- Green, R.A. (2001), "Energy-based Evaluation and Remediation of Liquefiable Soils", PhD. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg
- Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I.H. (2009), "The WEKA data mining software: an update", ACM SIGKDD explorations newsletter, 11(1), 10-18. https://doi.org/10.1145/1656274.1656278
- Hanna, A.M., Ural, D. and Saygili, G. (2007), "Neural network model for liquefaction potential in soil deposits using Turkey and Taiwan earthquake data", Soil Dyn. Earthq. Eng., 27(6), 521-540. https://doi.org/10.1016/j.soildyn.2006.11.001.
- He, L. and Huang, S. (2020), "An efficient krill herd algorithm for color image multilevel thresholding segmentation problem", Appl. Soft Comput., 89, 106063. https://doi.org/10.1016/j.asoc.2020.106063.
- Hofmann, E.E., Haskell, A.E., Klinck, J.M. and Lascara, C.M. (2004), "Lagrangian modelling studies of Antarctic krill (Euphausia superba) swarm formation", ICES J. Mar. Sci., 61(4), 617-631. https://doi.org/10.1016/j.icesjms.2004.03.028.
- Hoque, M.M., Ansary, M.A. and Yasin, S.J. (2017), "Effects of relative density and effective confining pressure on liquefaction resistance of sands" Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, South Korea, September.
- Hu, J.L., Tang, X.W. and Qiu, J.N. (2016), "Assessment of seismic liquefaction potential based on Bayesian network constructed from domain knowledge and history data", Soil Dyn. Earthq. Eng., 89, 49-60. https://doi.org/10.1016/j.soildyn.2016.07.007.
- Javdanian, H., Heidari, A. and Kamgar, R. (2017), "Energy-based estimation of soil liquefaction potential using GMDH algorithm", Iranian J. Sci. Tech. T.Civil Eng., 41(3), 283-295. https://doi.org/10.1007/s40996-017-0061-4.
- Karthick, P.T. and Palanisamy, C. (2019), "Optimized cluster head selection using krill herd algorithm for wireless sensor network", Automatika: casopis za automatiku, mjerenje, elektroniku, racunarstvo i komunikacije, 60(3), 340-348. https://doi.org/10.1080/00051144.2019.1637174.
- Kokusho, T. (2013), "Liquefaction potential evaluation: energy-based method comparedto stress-based method", Proceedings of the 7th International Conference on Case Histories in Geotechnical Engineering, Chicago, USA, April.
- Lee, K.L. and Seed, H.B. (1967), "Cyclic stress conditions causing liquefaction of sand", J. Soil Mech. Found. Division, 93(1), 47-70. https://doi.org/10.1061/JSFEAQ.0000945
- Mandal, B., Roy, P.K. and Mandal, S. (2014), "Economic load dispatch using krill herd algorithm", Int. J. Elec. Power Energy Syst., 57, 1-10. https://doi.org/10.1016/j.ijepes.2013.11.016.
- Monkul, M.M., Kendir, S.B., Tutuncu, Y.E. (2021), "Combined effect of fines content and uniformity coefficient on cyclic liquefaction resistance of silty sands", Soil Dynamics and Earthquake Engineering, 151, 106999 https://doi.org/10.1016/j.soildyn.2021.106999
- Muduli, P.K. and Das, S.K. (2014), "Evaluation of liquefaction potential of soil based on standard penetration test using multigene genetic programming model", Acta Geophysica, 62(3), 529-543. https://doi.org/10.2478/s11600-013-0181-6.
- Nemat-Nasser S. and Shokooh A. (1979), "A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing", Can. Geotech. J., 16(4), 659-678. https://doi.org/10.1139/t79-076.
- Okur, V. and Umu, S.U. (2013), "Energy approach to unsaturated cyclic strength of sand", Bull Earthq. Eng., 11, 503-519. https://doi.org/ 10.1007/s10518-012-9396-1.
- Sabbar, A.S., Chegenizadeh, A. and Nikraz, H. (2019), "Prediction of liquefaction susceptibility of clean sandy soils using artificial intelligence techniques", Indian Geotech. J., 49(1), 58-69. https://doi.org/10.1007/s40098-017-0288-9.
- Seed, H.B. and Idriss, I.M. (1971), "Simplified procedure for evaluating soil liquefaction potential", J. Soil Mech. Found. Division, 97(9), 1249-1273. https://doi.org/10.1061/JSFEAQ.0001662.
- Seed, H.B., Tokimatsu, K., Harder, L.F. and Chung, R.M. (1985), "Influence of SPT procedures in soil liquefaction resistance evaluations", J. Geotech. Eng., 111(12),
- Sonmezer Y.B., Akyuz A. and Kayabali K., (2020), "Investigation of the effect of grain size on liquefaction potential of sands", Geomech. Eng., 20(3), 243-254. https://doi.org/10.12989/gae.2020.20.3.243.
- Sultana, S. and Roy, P.K. (2016), "Krill herd algorithm for optimal location of distributed generator in radial distribution system", Appl. Soft Comput., 40, 391-404. https://doi.org/10.1016/j.asoc.2015.11.036.
- Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil Mechanics in Engineering Practice, John Wiley & Sons, New York, USA.
- Townsend, J.T. (1971), "Erratum to: Theoretical analysis of an alphabetic confusion matrix", Perception & Psychophysics, 10(4), 256-256. https://doi.org/10.3758/BF03212817.
- Trifunac, M. (1995), "Empirical criteria for liquefaction in sands via standard penetration tests and seismic wave energy", Soil Dyn. Earthq. Eng., 14(6), 419-426. https://doi.org/10.1016/0267-7261(95)00016-N.
- Whitman, R.V. (1971), "Resistance of soil to liquefaction and settlement", Soils Found., 11(4), 59-68. https://doi.org/10.3208/sandf1960.11.4_59
- Xenaki, V.C. and Athanasopoulos, G.A. (2003), "Liquefaction resistance of sand-silt mixtures: an experimental investigation of the effect of fines", Soil Dyn. Earthq. Eng., 23(3), 1-12. https://doi.org/10.1016/S0267-7261(02)00210-5.
- Xue, X. and Xiao, M. (2016), "Application of genetic algorithm-based support vector machines for prediction of soil liquefaction", Environ. Earth Sci., 75(10), 874. https://doi.org/10.1007/s12665-016-5673-7.
- Xue, X. and Yang, X. (2016), "Seismic liquefaction potential assessed by support vector machines approaches", Bull. Eng. Geol. Environ., 75(1), 153-162. https://doi.org/10.1007/s10064-015-0741-x.
- Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.D.L., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.S.C., Marcuson, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B. and Stokoe, K.H. (2001), "Liquefaction resistance of soils - Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils", J. Geotech. Geoenviron. Eng., 127(4), 817-833. http://dx.doi.org/10.1061/(ASCE)1090-0241(2001)127:4(297)
- Zhang, W. and Goh, A.T.C. (2016), "Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression", Geomech. Eng., 10(3), 269-284. https://doi.org/10.12989/gae.2016.10.3.269.