Acknowledgement
This work is supported by the National Natural Science Foundation of China (nos. U21A20159, 52079133, 41902288), CRSRI Open Research Program (Program SN: CKWV2019746/KY), MOE Key Lab of Disaster Forecast and Control in Engineering, Jinan University (no. 20200904002), and the Youth Innovation Promotion Association CAS (no. 2019323).
References
- Baziar, M.H., Nabizadeh, A., Lee. C.J. and Hung, W.Y. (2014), "Centrifuge modeling of interaction between reverse faulting and tunnel", Soil Dyn. Earthq. Eng., 65, 151-164. https://doi.org/10.1016/j.soildyn.2014.04.008.
- Cai, Q.P., Peng, J.M., Ng, C.W., Shi, J.W. and Chen, X.X. (2019), "Centrifuge and numerical modelling of tunnel intersected by normal fault rupture in sand", Comput. Geotech., 111, 137-146. https://doi.org/10.1016/j.compgeo.2019.03.010.
- Zhen, C., Qian, S., Gui-min, Z., Mao-chu, Z. and Xian-cheng, M. (2022), "Response and mechanism of a tunnel subjected to combined fault rupture deformation and subsequent seismic excitation", Transport. Geotech., 34, 100749. https://doi.org/10.1016/j.trgeo.2022.100749.
- Huang, J.Q., Zhao, M. and Du, X.L. (2017), "Non-linear seismic responses of tunnels within normal fault ground under obliquely incident P waves", Tunn. Undergr. Sp. Tech., 61, 26-39. https://doi.org/10.1016/j.tust.2016.09.006.
- Jalali, H.H., Rofooei, F.R., Attari, N.K.A. and Samadian, M. (2016), "Experimental and finite element study of the reverse faulting effects on buried continuous steel gas pipelines", Soil Dyn. Earthq. Eng., 86, 1-14. https://doi.org/10.1016/j.soildyn.2016.04.006
- Kiani, M., Akhlaghi, T. and Ghalandarzadeh, A. (2016), "Experimental modeling of segmental shallow tunnels in alluvial affected by normal faults", Tunn. Undergr. Sp. Tech., 51, 108-119. https://doi.org/10.1016/j.tust.2015.10.005.
- Lin, M.L., Chuang, C.F., Jeng, F.S. and Yao, T.C. (2007), The deformation of overburden soil induced by thrust faulting and its impact on underground tunnels", Eng. Geol., 92(3-4), 110-132. https://doi.org/10.1016/j.enggeo.2007.03.008.
- Liu, C., Tang, X., Wei, H., Wang, P. and Zhao, H. (2020), "Model tests of jacked-pile penetration into sand using transparent soil and incremental particle image velocimetry", KSCE J. Civil Eng., 24, 1128-1145. https://doi.org/10.1007/s12205-020-1643-4.
- Liu, X.Z., Li, X., Sang, Y.L. and Lin, L. (2015), "Experimental study on normal fault rupture propagation in loose strata and its impact on mountain tunnels", Tunn. Undergr. Sp. Tech., 49, 417-425. https://doi.org/10.1016/j.tust.2015.05.01.
- Melissianos, V.E., Korakitis, G.P., Gantes, C.J. and Bouckovalas, G.D. (2016), "Numerical evaluation of the effectiveness of flexible joints in buried pipelines subjected to strike-slip fault rupture", Soil Dyn. Earthq. Eng., 90, 395-410. https://doi.org/10.1016/j.soildyn.2016.09.012.
- Melissianos, V.E., Lianos, X.A., Bachas, K.K. Gantes, C.J. (2017), "Experimental investigation of pipes with flexible joints under fault rupture", J. Constr. Steel Res., 128, 633-648. https://doi.org/10.1016/j.jcsr.2016.09.026.
- Qiao, Y., Tang, J., Liu, G. and He, M. (2022), "Longitudinal mechanical response of tunnels under active normal faulting", Undergr. Sp., 7(4), 662-679. https://doi.org/10.1016/j.undsp.2021.12.002.
- Sabagh, M. and Ghalandarzadeh, A. (2020), "Centrifugal modeling of continuous shallow tunnels at active normal faults intersection", Transport. Geotech., 22, 100325. https://doi.org/10.1016/j.trgeo.2020.100325.
- Shahidi, A.R. and Vafaeian, M. (2005), "Analysis of longitudinal profile of the tunnels in the active faulted zone and designing the flexible lining (for Koohrang-III tunnel)", Tunn. Undergr. Sp. Tech., 20, 213-221. https://doi.org/10.1016/j.tust.2004.08.003.
- Vazouras, P., Karamanos, S.A. and Dakoulas, P. (2010), "Finite element analysis of buried steel pipelines under strike-slip fault displacements", Soil Dyn. Earthq. Eng., 30, 1361-1376. https://doi.org/10.1016/j.soildyn.2010.06.011.
- Vazouras, P., Karamanos, S.A. and Dakoulas, P. (2012), "Mechanical behavior of buried steel pipes crossing active strike-slip faults", Soil Dyn. Earthq. Eng., 41, 164-180. https://doi.org/10.1016/j.soildyn.2012.05.012.
- Wang, Q., Geng, P., Li, P., Wang, T. and Sun, W. (2023), "Failure analysis and dislocation-resistant design parameters of mining tunnel under normal faulting", Eng. Fail. Anal., 143, 106902. https://doi.org/10.1016/j.engfailanal.2022.106902.
- Wang, T., Geng, P., Li, P., Wang, Q. and Wang, L. (2022), "Deformation and failure of overburden soil subjected to normal fault dislocation and its impact on tunnel", Eng. Fail. Anal., 142, 106747. https://doi.org/10.1016/j.engfailanal.2022.106747.
- Yan, Y.S., Chen, Y.H., Wang, C.C., Hwu, Y., Lee, Y.C., Sheu, H. S. andChiang, C.C. (2021), "Faults caused by the fault: Microstructural and mineral characterization of deformation in Chungliao Tunnel, Taiwan, caused by Chishan Fault", Eng. Geol., 292, 106245. https://doi.org/10.1016/j.enggeo.2021.106245.
- Yao, C., He, C., Takemura, J., Feng, K., Guo, D. and Huang, X. (2021), "Active length of a continuous pipe or tunnel subjected to reverse faulting", Soil Dyn. Earthq. Eng., 148, 106825. https://doi.org/10.1016/j.soildyn.2021.106825.
- Zaheri, M., Ranjbarnia, M., Dias, D. and Oreste, P. (2020), "Performance of segmental and shotcrete linings in shallow tunnels crossing a transverse strike-slip faulting", Transport. Geotech., 23, 100333. https://doi.org/10.1016/j.trgeo.2020.100333.
- Zeng, G., Geng, P., Guo, X., Li, P., Wang, Q. and Ding, T. (2021), "An anti-fault study of basalt fiber reinforced concrete in tunnels crossing a stick-slip fault", Soil Dyn. Earthq. Eng., 148, 106687. https://doi.org/10.1016/j.soildyn.2021.106687.
- Zhong, Z., Wang, Z., Zhao, M. and Du, X. (2020), "Structural damage assessment of mountain tunnels in fault fracture zone subjected to multiple strike-slip fault movement", Tunn. Undergr. Sp. Tech., 104, 103527. https://doi.org/10.1016/j.tust.2020.103527.