DOI QR코드

DOI QR Code

Analysis of pile group behaviour to adjacent tunnelling considering ground reinforcement conditions with assessment of stability of superstructures

  • Young-Jin Jeon (College Institute of Industrial Technology, Kangwon National University) ;
  • Cheol-Ju Lee (Department of Civil Engineering, Kangwon National University)
  • Received : 2022.10.10
  • Accepted : 2023.03.26
  • Published : 2023.06.10

Abstract

Tunnel construction activity, conducted mainly in mountains and within urban centres, causes soil settlement, thus requiring the relevant management of slopes and structures as well as evaluations of risk and stability. Accordingly, in this study we performed a three-dimensional finite element analysis to examine the behaviour of piles and pile cap stability when a tunnel passes near the bottom of the foundation of a pile group connected by a pile cap. We examined the results via numerical analysis considering different conditions for reinforcement of the ground between the tunnel and the pile foundation. The numerical analysis assessed the angular distortion of the pile cap, pile settlement, axial force, shear stress, relative displacement, and volume loss due to tunnel excavation, and pile cap stability was evaluated based on Son and Cording's evaluation criterion for damage to adjacent structures. The pile located closest to the tunnel under the condition of no ground reinforcement exhibited pile head settlement approximately 70% greater than that of the pile located farthest from the tunnel under the condition of greatest ground reinforcement. Additionally, pile head settlement was greatest when the largest volume loss occurred, being approximately 18% greater than pile head settlement under the condition having the smallest volume loss. This paper closely examines the main factors influencing the behaviour of a pile group connected by a pile cap for three ground reinforcement conditions and presents an evaluation of pile cap stability.

Keywords

Acknowledgement

This research was supported by a grant (2019-MOIS33-005) of Lower-level and Core Disaster-Safety 329 Technology Development Program funded by the Ministry of Interior and Safety (MOIS, Korea) and this research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2017R1D1A1B05035579, 2022R1A6A3A01085973).

References

  1. Ayasrah, M., Qiu, H., Zhang, X. and Daddow, M. (2020), "Prediction of ground settlement induced by slurry shield tunnelling in granular soils", Civil Eng. J., 6(12), 2273-2289. https://doi.org/10.28991/cej-2020-03091617. 
  2. Ayasrah, M., Qiu, H. and Zhang, X. (2021), "Influence of cairo metro tunnel excavation on pile deep foundation of the adjacent underground structures: Numerical study", Symmetry, 13(3), 426. https://doi.org/10.3390/sym13030426. 
  3. Boscardin, M.D. and Cording, E.J. (1989), "Building response to excavation-induced settlement", J. Geotech. Eng. ASCE, 115(1), 1-21. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:1(1). 
  4. Burland, J.B., Broms, B.B. and de Mello, V.F.B. (1977), "Behavior of foundations and structures", Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, Japanese Geotechnical Society, Tokyo, Japan. 
  5. Burland, J.B. (1995), "Assessment of risk of damage to buildings due to tunnelling and excavations", Proceedings of the 1st International Conference on Earthquake Geotechnical Engineering, IS-Tokyo. 
  6. Brinkgreve, R.B.J., Kumarswamy, S. and Swolfs, W.M. (2015), "Reference manual", Plaxis 3D 2015 user's manual, Delft, 1-284. 
  7. Cheng, C.Y., Dasari, G.R., Chow, Y.K. and Leung, C.F. (2007), "Finite element analysis of tunnel-soil-pile interaction using displacement controlled model", Tunn. Undergr. Sp. Tech., 22(4), 450-466. https://doi.org/10.1016/j.tust.2006.08.002. 
  8. Choi, Y.G., Park, J.H., Woo, S.B. and Jeong, Y.J. (2003), "Reinforcing effect of FRP multi-step grouting for NATM tunnel through weathered zone", KSCE 2003 convention program, Seoul, Korea. 
  9. Choi, H.J., Kim, S.G., Jang, K.J., Shim, J.D. and Eun, S.J. (2005), "Case Study on Tunnel Design under Terminal Structure of Gimpo Airport", Proceedings of the KSCE Tunnel Committee Special Conference, Seoul, Korea. 
  10. Davisson, M.T. (1972), "High capacity piles", Proceedings of Lecture Series in Innovations in Foundation Construction, ASCE, Illinois Section. 
  11. Dias, T.G.S. and Bezuijen, A. (2014a), "Pile tunnel interaction: Literature review and data analysis", Proceedings of the ITA World Tunnel Congress 2014, Iguassu Falls, Brazil, May. 
  12. Dias, T.G.S. and Bezuijen, A. (2014b), "Pile-tunnel interaction: A conceptual analysis", Proceedings of the 8th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, CRC Press, Seoul, Korea, August. 
  13. Finno, R.J., Voss, F.T., Rossow, E. and Blackburn, J.T. (2005), "Evaluating damage potential in buildings affected by excavations", J. Geotech. Geoenviron. Eng. ASCE, 131(10), 1199-1210. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1199). 
  14. Hartono, E., Leung, C.F., Shen, R.F., Chow, Y.K., Ng, Y.S., Tan, H.T. and Hua, C.J. (2014), "Behaviour of pile above tunnel in clay", Proceedings of the 8th International Conference on Physical Modelling in Geotechnics, Perth, Australia, January. 
  15. Hong, Y., Soomro, M.A. and Ng, C.W.W. (2015), "Settlement and load transfer mechanism of pile group due to side-by-side twin tunnelling", Comput. Geotech., 64, 105-119. https://doi.org/10.1016/j.compgeo.2014.10.007. 
  16. Jacobsz, S.W. (2002), "The effects of tunnelling on piled foundations", Ph.D. Thesis, University of Cambridge, Cambridge, U.K.
  17. Jue, K.S. and Na, D.S. (2005). "A study on the construction of tunnel near the piles of foundation of an overpass", Proceedings of the KSCE Tunnel Committee Special Conference. 
  18. Jeon, Y.J. and Lee, C.J. (2015), "A study on the behaviour of single piles to adjacent tunnelling in stiff clay", J. Korean Geo-Environ. Soc., 16(6), 13-22. https://doi.org/10.14481/jkges.2015.16.6.13. 
  19. Jeon, Y.J., Kim, S.H. and Lee, C.J. (2015), "A study on the effect of tunnelling to adjacent single piles and pile groups considering the transverse distance of pile tips from the tunnel", J. Korean Tunnelling and Underground Space Association, 17(6), 637-652. https://doi.org/10.9711/KTAJ.2015.17.6.00 
  20. Jeon, Y.J., Kim, S.H., Kim, J.S. and Lee, C.J. (2017), "A study on the effects of ground reinforcement on the behaviour of pre-existing piles affected by adjacent tunnelling", J. Korean Tunnelling and Underground Space Association, 19(3), 389-407. https://doi.org/10.9711/KTAJ.2017.19.3.389. 
  21. Jeon, Y.J., Kim, J.S., Jeon, S.C., Jeon, S.J., Park, B.S. and Lee, C.J. (2018), "A study on the behaviour of single piles to adjacent Shield TBM tunnelling by considering face pressures", J. Korean Tunnelling and Underground Space Association, 20(6), 1003-1022. https://doi.org/10.9711/KTAJ.2018.20.6.1003. 
  22. Jeon, Y.J., Jeon, S.C., Jeon, S.J. and Lee, C.J. (2020a), "Study on the behaviour of pre-existing single piles to adjacent shield tunnelling by considering the changes in the tunnel face pressures and the locations of the pile tips", Geomech. Eng., 21(2), 187-200. https://doi.org/10.12989/gae.2020.21.2.187. 
  23. Jeon, Y.J., Jeon, S.C., Jeon, S.J. and Lee, C.J. (2020b), "A study on the behaviour of pre-existing single piles to adjacent shield TBM tunnelling from three-dimensional finite element analyses", J. Korean Tunnelling and Underground Space Association, 22(1), 23-46. https://doi.org/10.9711/KTAJ.2020.22.1.023. 
  24. Lee, C.J. and Chiang, K.H. (2007), "Responses of single piles to tunnelling-induced soil movements in sandy ground", Canadian Geotechnical Journal, 44(10), 1224-1241. https://doi.org/10.1139/T07-050 
  25. Lee, C.J. (2012a), "Three-dimensional numerical analyses of the response of a single pile and pile groups to tunnelling in weak weathered rock", Tunn. Undergr. Sp. Tech., 32, 132-142. https://doi.org/10.1016/j.tust.2012.06.005. 
  26. Lee, C.J. (2012b), "Behaviour of single piles and pile groups in service to adjacent tunnelling conducted in the lateral direction of the piles", J. Korean Tunnelling and Underground Space Association, 14(4), 337-356.  https://doi.org/10.9711/KTAJ.2012.14.4.337
  27. Lee, C.J. (2012c), "The response of a single pile and pile groups to tunnelling performed in weathered rock", J. Korean Society of Civil Engineers, 32(5), 199-210.  https://doi.org/10.12652/Ksce.2012.32.5C.199
  28. Lee, S.W., Choy, C.K.M. and Tse, S.C. (2012), "3D Numerical modelling of tunnelling intersecting piles", Geotechnical Aspects of Underground Construction in Soft Ground, 919-925. 
  29. Lee, C.J. (2013), "Numerical analysis of pile response to open face tunnelling in stiff clay", Comput. Geotech., 51, 116-127. https://doi.org/10.1016/j.compgeo.2013.02.007. 
  30. Lee, C.J. and Jeon, Y.J. (2015), "A study on the effect of the locations of pile tips on the behaviour of piles to adjacent tunnelling", J. Korean Tunnelling and Underground Space Association, 17(2), 91-105. https://doi.org/10.9711/KTAJ.2015.17.2.091. 
  31. Lee, C.J., Jeon, Y.J., Kim, S.H. and Park, I.J., (2016), "The influence of tunnelling on the behaviour of pre-existing piled foundations in weathered soil", Geomech. Eng., 11(4), 553-570. https://doi.org/10.12989/gae.2016.11.4.553. 
  32. Lee, Y.J. (2008), "A boundary line between shear strain formations associated with tunneling adjacent to an existing piled foundation", J. Korean Tunnelling and Underground Space Association, 10(3), 283-293. 
  33. Liu, C., Zhang, Z. and Regueiro, R.A. (2014), "Pile and pile group response to tunnelling using a large diameter slurry shield - Case study in Shanghai", Comput Geotech., 59, 21-43. https://doi.org/10.1016/j.compgeo.2014.03.006. 
  34. Macklin, S.R. (1999), "The prediction of volume loss due to tunnelling in overconsolidated clay based on heading geometry and stability number", Ground Eng., 32(4), 30-33. 
  35. Marshall, A.M. (2009), "Tunnelling in sand and its effect on pipelines and piles", Ph.D. Thesis, University of Cambridge, Cambridge, U.K.
  36. Mair, R.J. and Williamson, M.G. (2014), "The influence of tunnelling and deep excavation on piled foundations", Geotechnical Aspects of Underground Construction in Soft Ground, Seoul, Korea, August. 
  37. Ng, C.W.W., Lu, H. and Peng, S.Y. (2013), "Three-dimensional centrifuge modelling of the effects of twin tunnelling on an existing pile", Tunn. Undergr. Sp. Tech., 35, 189-199. https://doi.org/10.1016/j.tust.2012.07.008. 
  38. Ng, C.W.W. and Lu, H. (2014), "Effects of the construction sequence of twin tunnels at different depths on an existing pile", Can. Geotech. J., 51(2), 173-183. https://doi.org/10.1139/cgj-2012-0452. 
  39. Ng, C.W.W., Soomro, M.A. and Hong, Y. (2014), "Threedimensional centrifuge modelling of pile group responses to side-by-side twin tunnelling", Tunn. Undergr. Sp. Tech., 43, 350-361. https://doi.org/10.1016/j.tust.2014.05.002. 
  40. Pang, C.H. (2006), "The effects of tunnel construction on nearby pile foundation", Ph.D. Thesis, The National University of Singapore, Singapore. 
  41. Plaxis 3D (2020), Reference Manual, in Plaxis 3D User's Manual. 
  42. Qiu, H., Wang, Z., Ayasrah, M., Fu, C. and Gang, L. (2022), "Numerical study on the reinforcement measures of tunneling on adjacent piles", Symmetry, 14(2), 288. https://doi.org/10.3390/sym14020288. 
  43. Selemetas, D. (2005), "The response of full-scale piles and piled structures to tunnelling", Ph.D. Thesis, University of Cambridge, U.K.
  44. Selemetas, D. and Standing, J.R. (2017). "Response of full-scale piles to EPBM tunnelling in London Clay", Geotechnique, 67(9), 823-836. https://doi.org/10.1680/jgeot.SIP17.P.126. 
  45. Son, M. and Cording, E.J. (2005). "Estimation of building damage due to excavation-induced ground movements", J. Geotech. Geoenviron. Eng. ASCE, 131(2), 162-177. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(162). 
  46. Soomro, M.A., Ng, C.W.W., Memon, N.A. and Bhanbhro, R. (2018), "Lateral behaviour of a pile group due to side-by-side twin tunnelling in dry sand: 3D centrifuge tests and numerical modelling", Comput. Geotech., 101, 48-64. https://doi.org/10.1016/j.compgeo.2018.04.010. 
  47. Williamson, M.G. (2014), "Tunnelling effects on bored piles in clay", Ph.D. Thesis, University of Cambridge, Cambridge, U.K.