References
- AASHTO (2010), LRFD Bridge Construction Specifications, Fifth Edition, LRFDUS-5. American Association of State Highway and Transportation Officials, Washington, DC.
- Abu-Hejleh, N., O'Neill M.W., Hanneman, D. and Attwooll, W.J. (2003), "Improvement of the geotechnical axial design methodology for colorado's drilled shafts socketed in weak rocks", Report No. CDOT-DTD-R-2003-6, Colorado Department of Transportation, Denver, USA.
- Adhikari, P., Ng, K.W., Gebreslasie, Y.Z., Wulff, S.S. and Sullivan, T.A. (2020), "Geomaterial classification criteria for design and construction of driven steel H-piles", Can. Geotech. J., 57(4), 616-621. https://doi.org/10.1139/cgj-2018-0786.
- Akai, K. (1993), "Testing Methods for indurated Soils and Soft Rocks- Interim Report", Proceedings of the an International Symposium for ISSMFE in Athens, Greece, September.
- Asem, P. (2020), "Prediction of unconfined compressive strength and deformation modulus of weak argillaceous rocks based on the standard penetration test", Int. J. Rock Mech. Min. Sci., 133, 104397. https://doi.org/10.1016/j.ijrmms.2020.104397.
- ASTM D4719 (2020), Standard Test Methods for Prebored Pressuremeter Testing in Soils. ASTM International, West Conshohocken, PA, USA
- Barrett, J.W. and Prendergast, L.J. (2020), "Empirical shaft resistance of driven piles penetrating weak rock", Rock Mech. Rock Eng., 53(12), 5531-5543. https://doi.org/10.1007/s00603-020-02228-7.
- Baecher, G.B. and Christian, J.T. (2003), Reliability and Statistics in Geotechnical Engineering, John Wiley & Sons, Chichester, UK.
- Benson, C. H. (1993), "Probability distributions for hydraulic conductivity of compacted soil liners", J. Geotech. Eng. - ASCE, 119(3), 471-486. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:3(471).
- Blyth, F.G.H. and De Freitas M.H. (1984), A Geology for Engineers. Elsevier, Linacre House, Jordan Hill, UK.
- Briaud, J.L. (2013), Geotechnical Engineering: Unsaturated and Saturated soils. John Wiley & Sons, New Jersey, USA.
- Brown, D.A., Turner, J.P. and Castelli, R.J. (2010), "Drilled Shafts: Construction Procedures and LRFD design methods", Report No. FHWA NHI-10-016, University of Wyoming, USA.
- Broch, E. (1974), "The influence of water on some rock properties", Proceedings of the 3rd Congress, ISRM, Denver. 74(2), Part A, 33-38.
- BS 5930 (2015), Code of practice for ground investigations. British Standard Institutions, UK.
- Carraro, J.A.H. and Salgado, R. (2004), "Mechanical behavior of non-textbook soils (Literature Review)", Report No. FHWA/IN/JTRP-2004/5, Purdue University, USA.
- Chai, Z., Kang, T. and Chen, W. (2014), "Effects of organic silicone additive material on physical and mechanical properties of mudstone", Geomech. Eng., 6(2), 139-151. https://doi.org/10.12989/gae.2014.6.2.139.
- Clarke, B.G. and Smith, A. (1992), "Self-boring pressuremeter tests in weak rocks", Constr. Build. Mater., 6(2), 91-96. https://doi.org/10.1016/0950-0618(92)90057-6.
- Clayton, C.R.I. (1995), The Standard Penetration Test (SPT): Methods and Use. Report No. 143, CIRIA, London.
- Clayton, C. R., Woods, R. I., Bond A.J. and Milititsky, J. (2014), Earth Pressure and Earth-Retaining Structures, CRC press, Boca Raton, Florida, USA.
- Coduto, D.P. (2011), Foundation Design: Principles and Practices, Pearson Education, London, UK.
- Cole, K.W. and Stroud, M.A. (1976), "Rock socket piles at Coventry Point, Market Way, Coventry". Geotechnique, 26(1), 47-62. https://doi.org/10.1680/geot.1976.26.1.47.
- Cripps, J.C. and Taylor, R.K. (1981), "The engineering properties of mudrocks", Q. J. Eng. Geol. Hydroge., 14(4), 325-346. https://doi.org/10.1144/GSL.QJEG.1981.014.04.10
- Cruz, N., Rodrigues, C. and Da Fonseca, A. V. (2014), "An approach to derive strength parameters of residual soils from DMT results", Soils Rocks, 37(3), 195-209. https://doi.org/10.28927/SR.373195
- Day, R.W. (2002), Geotechnical Earthquake Engineering Handbook, McGraw-Hill Education, New York, USA.
- Dobereiner, L. and De Freitas, M.H. (1986), "Geotechnical properties of weak sandstones", Geotechnique, 36(1), 79-94. https://doi.org/10.1680/geot.1986.36.1.79.
- Gannon, J.A., Masterton, G.G.T., Wallace, W.A. and Wood, D.M. (1999), Piled foundations in weak rock. Report No. 181, CIRIA, London.
- Goodman, R.E. (1989), Introduction to Rock Mechanics, John Wiley & Sons, Hoboken, New Jersey, USA.
- Grainger, P. (1984), "The classification of mudrocks for engineering purposes", Q. J. Eng. Geol. Hydroge., 17(4), 381-387. https://doi.org/10.1144/GSL.QJEG.1984.017.04.13.
- Gupta, R.C (2012), "Hyperbolic model for load tests on instrumented drilled shafts in intermediate geomaterials and rock", J. Geotech. Geoenviron. Eng., 138(11), 1407-1414. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000697.
- Haeri, H., Sarfarazi, V., Shemirani, A.B. and Hosseini, S.S. (2017), "Experimental and numerical investigation of the effect of sample shapes on point load index", Geomech. Eng., 13(6), 1045-1055. https://doi.org/10.12989/gae.2017.13.6.1045.
- Herrera, R. and Jones, L.E. (2016), "Drilled shaft design and load testing in Florida intermediate geomaterial and weak limestone", Transport. Res.Record, 2579(1), 32-39. https://doi.org/10.3141/2579-04.
- Hoek, E. and Brown, E.T. (1997), "Practical estimates of rock mass strength", Int. J. Rock Mech. Min. Sci., 34(8), 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X.
- Irvine, J., Terente, V., Lee, L.T. and Comrie, R. (2015), "Driven pile design in weak rock", Proceedings of the Int. Symp. Frontiers in Offshore Geotechnics III, Oslo, June.
- IRC-78 (2014), Standard specifications and code of practice for road bridges. Section VII - Foundations and Substructure, Indian Road Congress, New Delhi, India
- IS 1893 (2016), Criteria for earthquake resistant design of structures. Part -1, General Provisions and Building, Bureau of Indian Standards, New Delhi, India.
- IS 2131- 1991 (Reaffirmed 2016), Method for standard penetration test for soils. Bureau of Indian Standards, New Delhi, India.
- IS 2911-Part 1(Sec 2), Code of practice for design and construction of pile foundations. Bureau of Indian Standards, New Delhi, India.
- IS 11315 (part 5) (1987), Method for the quantitative descriptions of discontinuities in rock mass. Bureau of Indian Standards, New Delhi, India.
- ISO 22475 -1 (2021), Geotechnical investigation and testing-Sampling methods and groundwater measurements- Part 1: technical principles for execution.
- ISRM (1978), "International society for rock mechanics commission on standardization of laboratory and field tests", Int. J. Rock Mech. Min. Sci. Geomech.Abstracts, 15, 319 -368. https://doi.org/10.1016/0148-9062(78)91472-9
- Johnston, I.W. (1995), "Rational determination of the engineering properties of soft rocks", Proceedings of Institution of Civil Engineers- Geotechnical Engineering, 113(2), 86-92. https://doi.org/10.1680/igeng.1995.27588.
- Johnston, I.W. and Novello, E.A. (1994), "Soil mechanics, rock mechanics and soft rock technology", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 107(1), 3-9. https://doi.org/10.1680/igeng.1994.25715.
- Kanji, M.A. (2014), "Critical issues in soft rocks", J. Rock Mech. Geotech. Eng., 6(3), 186-195. https://doi.org/10.1016/j.jrmge.2014.04.002.
- Lee, S.H., Jo, B.H. and Chung, (2016), "Evaluation of the engineering properties of the weathered layer in Korea", Proceedings of the 5 th International Conference on Geotechnical and Geo-physical Site Characterisation, Queensland, September.
- Loehr, E.J., Lutenegger, A., Rosenblad, B. and Boeckmann, A. (2017), "Geotechnical site characterization", Report No. FHWA NHI -16-072, University of Missouri, Columbia, USA.
- Long, J.H. (2016), "Static pile load test on driven piles into intermediate geomaterials", Report No. WHRP 0092-12-08, University of Illinois, USA.
- Mayne, P.W. and Harris, D.E. (1993), Axial Load Displacement Behavior of Drilled Shaft Foundations in Piedmont Residuum. FHWA Reference No. 41-30-2175. School of Civil Engineering, Georgia Institute of Technology, USA.
- Melchers, R.E. and Beck, A.T. (2018), Structural Reliability Analysis and Prediction, John Wiley & Sons, Chichester, UK.
- Mitchell, J.K. and Soga, K. (2005), Fundamentals of Soil Behavior. John Wiley & Sons, Hoboken, New Jersey, USA.
- Mokwa, R, and Brooks, H. (2008), "Axial capacity of piles supported on intermediate geomaterial", Report No. FHWA/MT-08-008/8117-32, Montana State University, USA.
- Mokwa, R.L. and Brooks, H. (2009), Driven pile capacity in intermediate geomaterial formations. In Contemporary Topics in Deep Foundations, ASCE, 263-270.
- Morgenstern, N.R. and Eigenbrod, K.D. (1974), "Classification of argillaceous soils and rocks", J. Geotech. Eng. - ASCE, 100(10), 1137-1156. https://doi.org/10.1061/AJGEB6.0000106.
- O'Neill, M.W., Townsend, F.C., Hassan, K.H., Buller, A. and Chan, P.S. (1996), "Load transfer for drilled shafts in intermediate geomaterials", Report No. FHWA-RD-95-172, Federal Highway Administration, Washington, D.C.
- O'Neill, M.W. and Reese, L.C. (1999), "Drilled shafts: construction procedures and design methods", Report No. FHWA-IF-99-025, Federal Highway Administration, Washington, DC.
- Paikowsky, S.G., Birgisson, B., McVay, M., Nguyen, T., Kuo, C., Baecher, G.B., Ayyub, B., Stenersen, K., O'Malley, K., Chernauskas, L. and O'Neill, M. (2004), Load and resistance factors design for deep foundations. NCHRP Report 507, Transportation Research Board of the National Academies, Washington DC.
- Pandit, B., Tiwari, G., Latha, G.M. and Babu, G.L. (2019), "Probabilistic characterization of rock mass from limited laboratory tests and field data: associated reliability analysis and its interpretation", Rock Mech. Rock Eng., 52(9), 2985-3001. https://doi.org/10.1007/s00603-019-01780-1.
- Pierre, B.J., and Michel, G. (2014), "Soil and rock classification from high pressure borehole expansion tests", Geotech. Geol. Eng., 32, 1397-1403. https://doi.org/10.1007/s10706-014-9752-9.
- Phoon, K.K. and Kulhawy, F.H. (1999a), "Characterization of geotechnical variability", Can. Geotech. J., 36(4), 612-624. https://doi.org/10.1139/t99-038.
- Phoon, K.K. and Kulhawy, F.H. (1999b), "Evaluation of geotechnical property variability", Can. Geotech. J., 36(4), 625-639. https://doi.org/10.1139/t99-039.
- Phoon, K.K. and Kulhawy, F.H. (2008), Serviceability limit state reliability-based design. Reliability-Based Design in Geotechnical Engineering: Computations and Applications. London, Taylor & Francis. 344-383.
- Phoon, K. K., Prakoso, W. A., Wang, Y. and Ching, J. (2016), Uncertainty Representation of Geotechnical Design Parameters. Reliability of Geotechnical Structures in ISO2394, 49-87. Balkema: CRC Press.
- Peck, R.B., Hanson, W.E. and Thornburn, T.H. (1974), Foundation Engineering, John Wiley & Sons, New York, USA.
- Prakoso, W.A. (2002), "Reliability-based design of foundations on rock for transmission line & similar structure", PhD Dissertation, Cornell University, New York.
- Prakoso, W.A. and Kulhawy, F.H. (2011), "Effects of testing conditions on intact rock strength and variability", Geotech. Geol. Eng., 29, 101-111. https://doi.org/10.1007/s10706-010-9356-y.
- Samtani, N.C, and Nowatzki, E.A. (2006), "Soils and foundations", Volume I. Report No. FHWA-NHI-06-088. Federal Highway Administration. Washington, D.C
- Sun, C.G., Cho, H.I., Kim, H.S. and Lee, M.G. (2022), "Determining N value from SPT blows for 30 cm penetration in weathered strata", Geomech. Eng., 28(6), 625-636. https://doi.org/10.12989/gae.2022.28.6.625.
- Rodgers, M., McVay, M., Horhota, D., Sinnreich, J. and Hernando, J. (2019), "Assessment of shear strength from measuring while drilling shafts in Florida limestone", Can. Geotech. J., 56(5), 662-674. https://doi.org/10.1139/cgj-2017-0629.
- Sato, T., Kikuchi, T. and Sugihara, K. (2000), "In-situ experiments on an excavation disturbed zone induced by mechanical excavation in Neogene sedimentary rock at Tono mine, central Japan", In Developments in geotechnical engineering, 84, 105-116. https://doi.org/10.1016/S0165-1250(00)80010-3
- Stroud, M.A. (1974), "The standard penetration test in insensitive clays and soft rocks", Proceedings of the European Symposium on Penetration Testing, Stockholm, June.
- Stark, T.D., Long, J.H. and Assem, P. (2013), "Improvement for determining the axial capacity of drilled shafts in shale in Illinois", Report No. FHWA-ICT-13-017, Illinois Center for Transportation, University of Illinois, USA.
- Tokimatsu, K. and Seed, H.B. (1987), "Evaluation of settlements in sands due to earthquake shaking", J. Geotech. Eng. - ASCE, 113(8) 861-878. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:8(861)
- Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil Mechanics in Engineering Practice, John Wiley & Sons, New York, USA.
- Thompson, W.R. and Brown, D.A. (1994), "Axial response of drilled shafts in intermediate geomaterials in the southeast", Proceedings of the Recent Advances in Deep Foundations-Ohio River Valley Soils Seminar XXV, Lexington, October.
- USACE (2003), "Engineering and Design -Slope Stability", Department of Army, Washington, DC.
- Waltham, T. (2002), Foundations of Engineering Geology, Spon Press, London, UK.
- Wilson, L.C. (1976), "Tests of bored and driven piles in cretaceous mudstone at Port Elizabeth, South Africa", Geotechnique, 26(1), 5-12. https://doi.org/10.1680/geot.1976.26.1.5.
- Zhao, H., Hou, J., Zhang, L. and Zhang, C. (2020), "Vertical load transfer for bored piles buried in cohesive intermediate geomaterials", Int. J. Geomech., 20(10), 04020172. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001810.