DOI QR코드

DOI QR Code

Engineering characterization of intermediate geomaterials - A review

  • T. Ashok Kumar (Department of Civil Engineering, National Institute of Technology Puducherry) ;
  • Ramanandan Saseendran (Department of Civil Engineering, Indian Institute of Technology Madras) ;
  • V. Sundaravel (TechnipFMC)
  • Received : 2022.06.08
  • Accepted : 2023.03.25
  • Published : 2023.06.10

Abstract

Intermediate Geomaterials (IGMs) are natural formation materials that exhibit the engineering behavior (strength and compressibility) between soils and rocks. The engineering behavior of such material is highly unpredictable as the IGMs are stiffer than soils and weaker/softer than rocks. Further, the characterization of such material needs exposure to both soil and rock mechanics. In most conventional designs of geotechnical structures, the engineering properties of the IGMs are either aligned with soils or rocks, and this assumption may end up either in an over-conservative design or under-conservative design. Hence, many researchers have attempted to evaluate its actual engineering properties through laboratory tests. However, the test results are partially reliable due to the poor core recovery of IGMs and the possible sample disturbance. Subsequently, in-situ tests have been used in recent years to evaluate the engineering properties of IGMs. However, the respective in-situ test finds its limitations while exploring IGMs with different geological formations at deeper depths with the constraints of sampling. Standard Penetration Test (SPT) is the strength-based index test that is often used to explore IGMs. Moreover, it was also observed that the coefficient of variation of the design parameters (which represents the uncertainties in the design parameters) of IGMs is relatively high, and also the studies on the probabilistic characterization of IGMs are limited compared with soils and rocks. With this perspective, the present article reviews the laboratory and in-situ tests used to characterize the IGMs and explores the shear strength variation based on their geological origin.

Keywords

References

  1. AASHTO (2010), LRFD Bridge Construction Specifications, Fifth Edition, LRFDUS-5. American Association of State Highway and Transportation Officials, Washington, DC.
  2. Abu-Hejleh, N., O'Neill M.W., Hanneman, D. and Attwooll, W.J. (2003), "Improvement of the geotechnical axial design methodology for colorado's drilled shafts socketed in weak rocks", Report No. CDOT-DTD-R-2003-6, Colorado Department of Transportation, Denver, USA.
  3. Adhikari, P., Ng, K.W., Gebreslasie, Y.Z., Wulff, S.S. and Sullivan, T.A. (2020), "Geomaterial classification criteria for design and construction of driven steel H-piles", Can. Geotech. J., 57(4), 616-621. https://doi.org/10.1139/cgj-2018-0786.
  4. Akai, K. (1993), "Testing Methods for indurated Soils and Soft Rocks- Interim Report", Proceedings of the an International Symposium for ISSMFE in Athens, Greece, September.
  5. Asem, P. (2020), "Prediction of unconfined compressive strength and deformation modulus of weak argillaceous rocks based on the standard penetration test", Int. J. Rock Mech. Min. Sci., 133, 104397. https://doi.org/10.1016/j.ijrmms.2020.104397.
  6. ASTM D4719 (2020), Standard Test Methods for Prebored Pressuremeter Testing in Soils. ASTM International, West Conshohocken, PA, USA
  7. Barrett, J.W. and Prendergast, L.J. (2020), "Empirical shaft resistance of driven piles penetrating weak rock", Rock Mech. Rock Eng., 53(12), 5531-5543. https://doi.org/10.1007/s00603-020-02228-7.
  8. Baecher, G.B. and Christian, J.T. (2003), Reliability and Statistics in Geotechnical Engineering, John Wiley & Sons, Chichester, UK.
  9. Benson, C. H. (1993), "Probability distributions for hydraulic conductivity of compacted soil liners", J. Geotech. Eng. - ASCE, 119(3), 471-486. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:3(471).
  10. Blyth, F.G.H. and De Freitas M.H. (1984), A Geology for Engineers. Elsevier, Linacre House, Jordan Hill, UK.
  11. Briaud, J.L. (2013), Geotechnical Engineering: Unsaturated and Saturated soils. John Wiley & Sons, New Jersey, USA.
  12. Brown, D.A., Turner, J.P. and Castelli, R.J. (2010), "Drilled Shafts: Construction Procedures and LRFD design methods", Report No. FHWA NHI-10-016, University of Wyoming, USA.
  13. Broch, E. (1974), "The influence of water on some rock properties", Proceedings of the 3rd Congress, ISRM, Denver. 74(2), Part A, 33-38.
  14. BS 5930 (2015), Code of practice for ground investigations. British Standard Institutions, UK.
  15. Carraro, J.A.H. and Salgado, R. (2004), "Mechanical behavior of non-textbook soils (Literature Review)", Report No. FHWA/IN/JTRP-2004/5, Purdue University, USA.
  16. Chai, Z., Kang, T. and Chen, W. (2014), "Effects of organic silicone additive material on physical and mechanical properties of mudstone", Geomech. Eng., 6(2), 139-151. https://doi.org/10.12989/gae.2014.6.2.139.
  17. Clarke, B.G. and Smith, A. (1992), "Self-boring pressuremeter tests in weak rocks", Constr. Build. Mater., 6(2), 91-96. https://doi.org/10.1016/0950-0618(92)90057-6.
  18. Clayton, C.R.I. (1995), The Standard Penetration Test (SPT): Methods and Use. Report No. 143, CIRIA, London.
  19. Clayton, C. R., Woods, R. I., Bond A.J. and Milititsky, J. (2014), Earth Pressure and Earth-Retaining Structures, CRC press, Boca Raton, Florida, USA.
  20. Coduto, D.P. (2011), Foundation Design: Principles and Practices, Pearson Education, London, UK.
  21. Cole, K.W. and Stroud, M.A. (1976), "Rock socket piles at Coventry Point, Market Way, Coventry". Geotechnique, 26(1), 47-62. https://doi.org/10.1680/geot.1976.26.1.47.
  22. Cripps, J.C. and Taylor, R.K. (1981), "The engineering properties of mudrocks", Q. J. Eng. Geol. Hydroge., 14(4), 325-346. https://doi.org/10.1144/GSL.QJEG.1981.014.04.10
  23. Cruz, N., Rodrigues, C. and Da Fonseca, A. V. (2014), "An approach to derive strength parameters of residual soils from DMT results", Soils Rocks, 37(3), 195-209. https://doi.org/10.28927/SR.373195
  24. Day, R.W. (2002), Geotechnical Earthquake Engineering Handbook, McGraw-Hill Education, New York, USA.
  25. Dobereiner, L. and De Freitas, M.H. (1986), "Geotechnical properties of weak sandstones", Geotechnique, 36(1), 79-94. https://doi.org/10.1680/geot.1986.36.1.79.
  26. Gannon, J.A., Masterton, G.G.T., Wallace, W.A. and Wood, D.M. (1999), Piled foundations in weak rock. Report No. 181, CIRIA, London.
  27. Goodman, R.E. (1989), Introduction to Rock Mechanics, John Wiley & Sons, Hoboken, New Jersey, USA.
  28. Grainger, P. (1984), "The classification of mudrocks for engineering purposes", Q. J. Eng. Geol. Hydroge., 17(4), 381-387. https://doi.org/10.1144/GSL.QJEG.1984.017.04.13.
  29. Gupta, R.C (2012), "Hyperbolic model for load tests on instrumented drilled shafts in intermediate geomaterials and rock", J. Geotech. Geoenviron. Eng., 138(11), 1407-1414. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000697.
  30. Haeri, H., Sarfarazi, V., Shemirani, A.B. and Hosseini, S.S. (2017), "Experimental and numerical investigation of the effect of sample shapes on point load index", Geomech. Eng., 13(6), 1045-1055. https://doi.org/10.12989/gae.2017.13.6.1045.
  31. Herrera, R. and Jones, L.E. (2016), "Drilled shaft design and load testing in Florida intermediate geomaterial and weak limestone", Transport. Res.Record, 2579(1), 32-39. https://doi.org/10.3141/2579-04.
  32. Hoek, E. and Brown, E.T. (1997), "Practical estimates of rock mass strength", Int. J. Rock Mech. Min. Sci., 34(8), 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X.
  33. Irvine, J., Terente, V., Lee, L.T. and Comrie, R. (2015), "Driven pile design in weak rock", Proceedings of the Int. Symp. Frontiers in Offshore Geotechnics III, Oslo, June.
  34. IRC-78 (2014), Standard specifications and code of practice for road bridges. Section VII - Foundations and Substructure, Indian Road Congress, New Delhi, India
  35. IS 1893 (2016), Criteria for earthquake resistant design of structures. Part -1, General Provisions and Building, Bureau of Indian Standards, New Delhi, India.
  36. IS 2131- 1991 (Reaffirmed 2016), Method for standard penetration test for soils. Bureau of Indian Standards, New Delhi, India.
  37. IS 2911-Part 1(Sec 2), Code of practice for design and construction of pile foundations. Bureau of Indian Standards, New Delhi, India.
  38. IS 11315 (part 5) (1987), Method for the quantitative descriptions of discontinuities in rock mass. Bureau of Indian Standards, New Delhi, India.
  39. ISO 22475 -1 (2021), Geotechnical investigation and testing-Sampling methods and groundwater measurements- Part 1: technical principles for execution.
  40. ISRM (1978), "International society for rock mechanics commission on standardization of laboratory and field tests", Int. J. Rock Mech. Min. Sci. Geomech.Abstracts, 15, 319 -368. https://doi.org/10.1016/0148-9062(78)91472-9
  41. Johnston, I.W. (1995), "Rational determination of the engineering properties of soft rocks", Proceedings of Institution of Civil Engineers- Geotechnical Engineering, 113(2), 86-92. https://doi.org/10.1680/igeng.1995.27588.
  42. Johnston, I.W. and Novello, E.A. (1994), "Soil mechanics, rock mechanics and soft rock technology", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 107(1), 3-9. https://doi.org/10.1680/igeng.1994.25715.
  43. Kanji, M.A. (2014), "Critical issues in soft rocks", J. Rock Mech. Geotech. Eng., 6(3), 186-195. https://doi.org/10.1016/j.jrmge.2014.04.002.
  44. Lee, S.H., Jo, B.H. and Chung, (2016), "Evaluation of the engineering properties of the weathered layer in Korea", Proceedings of the 5 th International Conference on Geotechnical and Geo-physical Site Characterisation, Queensland, September.
  45. Loehr, E.J., Lutenegger, A., Rosenblad, B. and Boeckmann, A. (2017), "Geotechnical site characterization", Report No. FHWA NHI -16-072, University of Missouri, Columbia, USA.
  46. Long, J.H. (2016), "Static pile load test on driven piles into intermediate geomaterials", Report No. WHRP 0092-12-08, University of Illinois, USA.
  47. Mayne, P.W. and Harris, D.E. (1993), Axial Load Displacement Behavior of Drilled Shaft Foundations in Piedmont Residuum. FHWA Reference No. 41-30-2175. School of Civil Engineering, Georgia Institute of Technology, USA.
  48. Melchers, R.E. and Beck, A.T. (2018), Structural Reliability Analysis and Prediction, John Wiley & Sons, Chichester, UK.
  49. Mitchell, J.K. and Soga, K. (2005), Fundamentals of Soil Behavior. John Wiley & Sons, Hoboken, New Jersey, USA.
  50. Mokwa, R, and Brooks, H. (2008), "Axial capacity of piles supported on intermediate geomaterial", Report No. FHWA/MT-08-008/8117-32, Montana State University, USA.
  51. Mokwa, R.L. and Brooks, H. (2009), Driven pile capacity in intermediate geomaterial formations. In Contemporary Topics in Deep Foundations, ASCE, 263-270.
  52. Morgenstern, N.R. and Eigenbrod, K.D. (1974), "Classification of argillaceous soils and rocks", J. Geotech. Eng. - ASCE, 100(10), 1137-1156. https://doi.org/10.1061/AJGEB6.0000106.
  53. O'Neill, M.W., Townsend, F.C., Hassan, K.H., Buller, A. and Chan, P.S. (1996), "Load transfer for drilled shafts in intermediate geomaterials", Report No. FHWA-RD-95-172, Federal Highway Administration, Washington, D.C.
  54. O'Neill, M.W. and Reese, L.C. (1999), "Drilled shafts: construction procedures and design methods", Report No. FHWA-IF-99-025, Federal Highway Administration, Washington, DC.
  55. Paikowsky, S.G., Birgisson, B., McVay, M., Nguyen, T., Kuo, C., Baecher, G.B., Ayyub, B., Stenersen, K., O'Malley, K., Chernauskas, L. and O'Neill, M. (2004), Load and resistance factors design for deep foundations. NCHRP Report 507, Transportation Research Board of the National Academies, Washington DC.
  56. Pandit, B., Tiwari, G., Latha, G.M. and Babu, G.L. (2019), "Probabilistic characterization of rock mass from limited laboratory tests and field data: associated reliability analysis and its interpretation", Rock Mech. Rock Eng., 52(9), 2985-3001. https://doi.org/10.1007/s00603-019-01780-1.
  57. Pierre, B.J., and Michel, G. (2014), "Soil and rock classification from high pressure borehole expansion tests", Geotech. Geol. Eng., 32, 1397-1403. https://doi.org/10.1007/s10706-014-9752-9.
  58. Phoon, K.K. and Kulhawy, F.H. (1999a), "Characterization of geotechnical variability", Can. Geotech. J., 36(4), 612-624. https://doi.org/10.1139/t99-038.
  59. Phoon, K.K. and Kulhawy, F.H. (1999b), "Evaluation of geotechnical property variability", Can. Geotech. J., 36(4), 625-639. https://doi.org/10.1139/t99-039.
  60. Phoon, K.K. and Kulhawy, F.H. (2008), Serviceability limit state reliability-based design. Reliability-Based Design in Geotechnical Engineering: Computations and Applications. London, Taylor & Francis. 344-383.
  61. Phoon, K. K., Prakoso, W. A., Wang, Y. and Ching, J. (2016), Uncertainty Representation of Geotechnical Design Parameters. Reliability of Geotechnical Structures in ISO2394, 49-87. Balkema: CRC Press.
  62. Peck, R.B., Hanson, W.E. and Thornburn, T.H. (1974), Foundation Engineering, John Wiley & Sons, New York, USA.
  63. Prakoso, W.A. (2002), "Reliability-based design of foundations on rock for transmission line & similar structure", PhD Dissertation, Cornell University, New York.
  64. Prakoso, W.A. and Kulhawy, F.H. (2011), "Effects of testing conditions on intact rock strength and variability", Geotech. Geol. Eng., 29, 101-111. https://doi.org/10.1007/s10706-010-9356-y.
  65. Samtani, N.C, and Nowatzki, E.A. (2006), "Soils and foundations", Volume I. Report No. FHWA-NHI-06-088. Federal Highway Administration. Washington, D.C
  66. Sun, C.G., Cho, H.I., Kim, H.S. and Lee, M.G. (2022), "Determining N value from SPT blows for 30 cm penetration in weathered strata", Geomech. Eng., 28(6), 625-636. https://doi.org/10.12989/gae.2022.28.6.625.
  67. Rodgers, M., McVay, M., Horhota, D., Sinnreich, J. and Hernando, J. (2019), "Assessment of shear strength from measuring while drilling shafts in Florida limestone", Can. Geotech. J., 56(5), 662-674. https://doi.org/10.1139/cgj-2017-0629.
  68. Sato, T., Kikuchi, T. and Sugihara, K. (2000), "In-situ experiments on an excavation disturbed zone induced by mechanical excavation in Neogene sedimentary rock at Tono mine, central Japan", In Developments in geotechnical engineering, 84, 105-116. https://doi.org/10.1016/S0165-1250(00)80010-3
  69. Stroud, M.A. (1974), "The standard penetration test in insensitive clays and soft rocks", Proceedings of the European Symposium on Penetration Testing, Stockholm, June.
  70. Stark, T.D., Long, J.H. and Assem, P. (2013), "Improvement for determining the axial capacity of drilled shafts in shale in Illinois", Report No. FHWA-ICT-13-017, Illinois Center for Transportation, University of Illinois, USA.
  71. Tokimatsu, K. and Seed, H.B. (1987), "Evaluation of settlements in sands due to earthquake shaking", J. Geotech. Eng. - ASCE, 113(8) 861-878. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:8(861)
  72. Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil Mechanics in Engineering Practice, John Wiley & Sons, New York, USA.
  73. Thompson, W.R. and Brown, D.A. (1994), "Axial response of drilled shafts in intermediate geomaterials in the southeast", Proceedings of the Recent Advances in Deep Foundations-Ohio River Valley Soils Seminar XXV, Lexington, October.
  74. USACE (2003), "Engineering and Design -Slope Stability", Department of Army, Washington, DC.
  75. Waltham, T. (2002), Foundations of Engineering Geology, Spon Press, London, UK.
  76. Wilson, L.C. (1976), "Tests of bored and driven piles in cretaceous mudstone at Port Elizabeth, South Africa", Geotechnique, 26(1), 5-12. https://doi.org/10.1680/geot.1976.26.1.5.
  77. Zhao, H., Hou, J., Zhang, L. and Zhang, C. (2020), "Vertical load transfer for bored piles buried in cohesive intermediate geomaterials", Int. J. Geomech., 20(10), 04020172. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001810.