DOI QR코드

DOI QR Code

Characterization of face stability of shield tunnel excavated in sand-clay mixed ground through transparent soil models

  • YuanHai Li (State Key Laboratory for Geomechanics and Deep Underground Engineering) ;
  • XiaoJie Tang (State Key Laboratory for Geomechanics and Deep Underground Engineering) ;
  • Shuo Yang (School of Civil Engineering, Xuzhou University of Technology) ;
  • YanFeng Ding (State Key Laboratory for Geomechanics and Deep Underground Engineering)
  • 투고 : 2022.08.24
  • 심사 : 2023.03.16
  • 발행 : 2023.06.10

초록

The construction of shield tunnelling in urban sites is facing serious risks from complex and changeable underground conditions. Construction problems in the sand-clay mixed ground have been more reported in recent decades for its poor control of soil loss in tunnel face, ground settlement and supporting pressure. Since the limitations of observation methods, the conventional physical modelling experiments normally simplify the tunnelling to a plane strain situation whose results are not reliable in mixed ground cases which exhibit more complicated responses. We propose a new method for the study of the mixed ground tunnel through which mixed lays are simulated with transparent soil surrogates exhibiting different mechanical properties. An experimental framework for the transparent soil modelling of the mixed ground tunnel was established incorporated with the self-developed digital image correlation system (PhotoInfor). To understand better the response of face stability, ground deformation, settlement and supporting phenomenon to tunnelling excavation in the sand-clay mixed ground, a series of case studies were carried out comparing the results from cases subjected to different buried depths and mixed phenomenon. The results indicate that the deformation mode, settlement and supporting phenomenon vary with the mixed phenomenon and buried depth. Moreover, a stratigraphic effect exists that the ground movement around mixed face reveals a notable difference.

키워드

과제정보

The work was funded by the National Natural Science Foundation of China (52274141), National Key Research and Development Program of China (2022YFC3003304), Natural Science Fund for Colleges and Universities in Jiangsu Province (21KJB580004) and the Science and Technology Plan Project of Xuzhou, China (KC21310).

참고문헌

  1. Alagha, A.S. and Chapman, D.N. (2019), "Numerical modelling of tunnel face stability in homogeneous and layered soft ground", Tunn. Undergr. Sp. Tech., 94, 103096. https://doi.org/10.1016/j.tust.2019.103096.
  2. Chambon, P. and Corte, J.F. (1994), "Shallow tunnels in cohesionless soil: stability of tunnel face", J. Geotech. Eng., 120(7), 1148-1165. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:7(1148).
  3. Chen, R., Meng, F., Li, Z., Ye, Y. and Ye, J. (2016), "Investigation of response of metro tunnels due to adjacent large excavation and protective measures in soft soils", Tunn. Undergr. Sp. Tech., 58, 224-235. https://doi.org/10.1016/j.tust.2016.06.002.
  4. Chen, R.P., Tang, L.J., Ling, D.S. and Chen, Y.M. (2011), "Face stability analysis of shallow shield tunnels in dry sandy ground using the discrete element method", Comput. Geotech., 38(2), 187-195. https://doi.org/10.1016/j.compgeo.2010.11.003.
  5. Cui, Q.L., Wu, H.N., Shen, S.L., Yin, Z.Y. and Horpibulsuk, S. (2016), "Protection of neighbour buildings due to construction of shield tunnel in mixed ground with sand over weathered granite", Environ. Earth Sci., 75(6), 458. https://doi.org/10.1007/s12665-016-5300-7.
  6. Galli, M. and Thewes, M. (2019), "Rheological characterisation of foam-conditioned sands in EPB tunneling", Int. J. Civil Eng., 17(1), 145-160. https://doi.org/10.1007/s40999-018-0316-x.
  7. Ganiyu, A.A., Rashid, A.S.A. and Osman, M.H. (2016), "Utilisation of transparent synthetic soil surrogates in geotechnical physical models: A review", J. Rock Mech. Geotech. Eng., 8(4), 568-576. https://doi.org/10.1016/j.jrmge.2015.11.009.
  8. Hasanpour, R., Schmitt, J., Ozcelik, Y. and Rostami, J. (2017), "Examining the effect of adverse geological conditions on jamming of a single shielded TBM in Uluabat tunnel using numerical modeling", J. Rock Mech. Geotech. Eng., 9(6), 1112-1122. https://doi.org/10.1016/j.jrmge.2017.05.010.
  9. Hayashi H., Okazaki Y., Sakai D., Morimoto S. and Shinji M. (2022), "Numerical Analysis for Elucidating the Effect of Tunnel Excavation in Gravel-Mixed Ground", Appl. Sci., 12(3), 1667. https://doi.org/10.3390/app12031667.
  10. Hird, C.C. and Stanier, S.A. (2010), "Modelling helical screw piles in clay using a transparent soil", Proceedings of the 7th International Conference on Physical Modelling in Geotechnics.
  11. Keating, T.J., Wolf, P. and Scarpace, F. (1975), "An improved method of digital image correlation", Photogrammetric Eng. Remote Sens., 41(8), 993-1002.
  12. Leca, E. and Dormieux, L. (1990), "Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material", Geotechnique, 40(4), 581-606. https://doi.org/10.1680/geot.1990.40.4.581.
  13. Lemer, A.C. (1997), "Old Cities and New Towns For Tomorrow's Infrastructure", Civil and Structural Engineering (chap. 4, pp. 73-88), https://doi.org/10.1016/B978-1-898563-33-4.50008-2
  14. Li, B.Q. and Einstein, H.H. (2017), "Comparison of visual and acoustic emission observations in a four point bending experiment on barre granite", Rock Mech. Rock Eng., 50(9), 2277-2296. https://doi.org/10.1007/s00603-017-1233-z.
  15. Li, Y., Tang, X., Yang, S. and Chen, J. (2019), "Evolution of the broken rock zone in the mixed ground tunnel based on the DSCM", Tunn. Undergr. Sp. Tech., 84, 248-258. https://doi.org/10.1016/j.tust.2018.11.017.
  16. Li, Y., Tang, X. and Zhu, H. (2022), "Optimization of the digital image correlation method for deformation measurement of geomaterials", Acta Geotech., 17, 5721-5737. https://doi.org/10.1007/s11440-022-01646-x.
  17. Li, Y., Yang, S., Tang, X., Ding, Y. and Zhang, Q. (2020), "Experimental investigation of the deformation and failure behavior of a tunnel excavated in mixed strata using transparent soft rock", KSCE J. Civil Eng., 24, 962-974. https://doi.org/10.1007/s12205-020-0072-8.
  18. Li, Y., Zhang, Q., Lin, Z. and Wang, X. (2016), "Spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway with model experiments", Int. J. Min. Sci. Technol., 26(5), 895-902. https://doi.org/10.1016/j.ijmst.2016.05.031.
  19. Liu, J. and Iskander, M. (2004), "Adaptive cross correlation for imaging displacements in soils", J. Comput. Civil Eng., 18(1), 46-57. https://doi.org/10.1061/(ASCE)0887-3801(2004)18:1(46).
  20. Liu, J.Q., Yuen, K.V., Chen, W.Z., Zhou, X.S. and Wei, W. (2020), "Grouting for water and mud inrush control in weathered granite tunnel: A case study", Eng. Geol., 279, 105896. https://doi.org/10.1016/j.enggeo.2020.105896.
  21. Ma, H., Yin, L., Gong, Q. and Wang, J. (2015), "TBM tunneling in mixed-face ground: Problems and solutions", Int. J. Min. Sci. Tech., 25(4), 641-647. https://doi.org/10.1016/j.ijmst.2015.05.019.
  22. Meguid, M.A., Saada, O., Nunes, M.A. and Mattar, J. (2008), "Physical modeling of tunnels in soft ground: A review", Tunn. Undergr. Sp. Tech., 23(2), 185-198. https://doi.org/10.1016/j.tust.2007.02.003.
  23. Sun, J. and Liu, J. (2014), Visualization of tunnelling-induced ground movement in transparent sand", Tunn. Undergr. Sp. Tech., 40, 236-240. https://doi.org/10.1016/j.tust.2013.10.009.
  24. Toth, A., Gong, Q. and Zhao, J. (2013), "Case studies of TBM tunneling performance in rock-soil interface mixed ground", Tunn. Undergr. Sp. Tech., 38, 140-150. https://doi.org/10.1016/j.tust.2013.06.001.
  25. Vergara, I.M. and Saroglou, C. (2017), "Prediction of TBM performance in mixed-face ground conditions", Tunn. Undergr. Sp. Tech., 69, 116-124. https://doi.org/10.1016/j.tust.2017.06.015.
  26. Wang, J., Lin, G., Xu, G., Wei, Y., Li, S., Tang, X. and He, C. (2022), "Face stability of EPB shield tunnels in multilayered ground with soft sand lying on hard rock considering dynamic excavation process: A DEM study", Tunn. Undergr. Sp. Tech., 120, 104268. https://doi.org/10.1016/j.tust.2021.104268.
  27. Wang, Q., Xie, X., Shahrour, I. and Huang, Y. (2021), "Use of deep learning, denoising technic and cross-correlation analysis for the prediction of the shield machine slurry pressure in mixed ground conditions", Automat. Constr., 128, 103741. https://doi.org/10.1016/j.autcon.2021.103741.
  28. Xie, X., Wang, Q., Huang, Z. and Qi, Y. (2018), "Parametric analysis of mixshield tunnelling in mixed ground containing mudstone and protection of adjacent buildings: Case study in Nanning metro", Eur. J. Environ. Civil Eng., 22(1), s130-s148. https://doi.org/10.1080/19648189.2017.1359113.
  29. Xu, Z.H., Wang, W.Y., Lin, P., Nie, L.C., Wu, J. and Li, Z.M. (2021), "Hard-rock TBM jamming subject to adverse geological conditions: Influencing factor, hazard mode and a case study of Gaoligongshan Tunnel", Tunn. Undergr. Sp. Tech., 108, 103683. https://doi.org/10.1016/j.tust.2020.103683
  30. Xue, Y., Li, X., Qiu, D., Ma, X., Kong, F., Qu, C. amd Zhao, Y. (2019), "Stability evaluation for the excavation face of shield tunnel across the Yangtze River by multi-factor analysis", Geomech. Eng., 19, 283-293. https://doi.org/10.12989/gae.2019.19.3.283
  31. Yang, H., Wang, H. and Zhou, X. (2016), "Analysis on the damage behavior of mixed ground during TBM cutting process", Tunn. Undergr. Sp. Tech., 57, 55-65. https://doi.org/10.1016/j.tust.2016.02.014.
  32. Zhang, C., Han, K. and Zhang, D. (2015), "Face stability analysis of shallow circular tunnels in cohesive-frictional soils", Tunn. Undergr. Sp. Tech., 50, 345-357. https://doi.org/10.1016/j.tust.2015.08.007.
  33. Zhang, P., Chen, R.P., Wu, H.N. and Liu, Y. (2020), "Ground settlement induced by tunneling crossing interface of waterbearing mixed ground: A lesson from Changsha, China", Tunn. Undergr. Sp. Tech., 96, 103224. https://doi.org/10.1016/j.tust.2019.103224.
  34. Zhang, W., Gu, X., Zhong, W., Ma, Z. and Ding, X. (2020), "Review of transparent soil model testing technique for underground construction: Ground visualization and result digitalization", Undergr. Space, 7(4), 702-723. https://doi.org/10.1016/j.undsp.2020.05.003.
  35. Zhang, Z. and Huang, M. (2014), "Geotechnical influence on existing subway tunnels induced by multiline tunneling in Shanghai soft soil", Comput. Geotech., 56, 121-132. https://doi.org/10.1016/j.compgeo.2013.11.008.
  36. Zhang, Z.X., Xu, Y., Kulatilake, P.H.S.W. and Huang, X. (2012), "Physical model test and numerical analysis on the behavior of stratified rock masses during underground excavation", Int. J Rock Mech Min. Sci., 49, 134-147. https://doi.org/10.1016/j.ijmst.2021.01.003.
  37. Zhao, Y., Gong, Q., Tian, Z., Zhou, S. and Jiang, H. (2019), "Torque fluctuation analysis and penetration prediction of EPB TBM in rock-soil interface mixed ground", Tunn. Undergr. Sp. Tech., 91, 103002. https://doi.org/10.1016/j.tust.2019.103002.