DOI QR코드

DOI QR Code

High-sensitivity Nitrogen Dioxide Gas Sensor Based on P3HT-doped Lead Sulfide Quantum Dots

P3HT가 도핑된 황화납 양자점 기반의 고감도 이산화질소 가스 센서

  • Received : 2023.04.03
  • Accepted : 2023.05.03
  • Published : 2023.05.31

Abstract

With the increasing concern of global warming caused by greenhouse gases owing to the recent industrial development, there is a growing need for advanced technology to control these emissions. Among the various greenhouse gases, nitrogen dioxide (NO2) is a major contributor to global warming and is mainly released from sources, such as automobile exhaust and factories. Although semiconductor-type NO2 gas sensors, such as SnO2, have been extensively studied, they often require high operating temperatures and complicated manufacturing processes, while lacking selectivity, resulting in inaccurate measurements of NO2 gas levels. To address these limitations, a novel sensor using PbS quantum dots (QDs) was developed, which operates at low temperatures and exhibits high selectivity toward NO2 gas owing to its strong oxidation reaction. Furthermore, the use of P3HT conductive polymer improved the thin film quality, reactivity, and reaction rate of the sensor. The sensor demonstrated the ability to accurately measure NO2 gas concentrations ranging from 500 to 100 ppm, with a 5.1 times higher sensitivity, 1.5 times higher response rate, and 1.15 times higher recovery rate compared with sensors without P3HT.

Keywords

Acknowledgement

본 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 연구개발특구진흥재단의 지원을 받아 수행된 연구입니다. (2020-DD-UP-0348). 본 논문은 한국생산기술연구원 기본사업 지원으로 수행한 연구입니다.

References

  1. A. Dey, "Semiconductor metal oxide gas sensors: A review", Mater. Sci. Eng. B, Vol. 229, pp. 206-217, 2018.  https://doi.org/10.1016/j.mseb.2017.12.036
  2. J. P. Cheng, J. Wang, Q. Q. Li, H. G. Liu, and Y. Li, "Review of recent developments in tin dioxide composites for gas sensing application", J. Ind. Eng. Chem., Vol. 44, pp. 1-22, 2016.  https://doi.org/10.1016/j.jiec.2016.08.008
  3. Y. O. Khaniabadi, G. Goudarzi, S. M. Daryanoosh, A. Borgini, A. Tittarelli, and A. D. Marco, "Exposure to PM10, NO2, and O3 impacts on human health", Environ. Sci. Pollut. Res., Vol. 24, pp. 2781-2789, 2017.  https://doi.org/10.1007/s11356-016-8038-6
  4. W. Yan, Y. Yun, and T. Ku, "NO2 inhalation promotes Alzheimer's disease-like progression: cyclooxygenase-2-derived prostaglandin E2 modulation and monoacylglycerol lipase inhibition-targeted medication", Sci. Rep., Vol. 6, No. 1, pp. 22429-22445, 2016.  https://doi.org/10.1038/srep22429
  5. R. Kumar, O. AI-Dossary, G. Kumar, and A. Umar, "Zinc Oxide Nanostructures for NO2 Gas-Sensor Applications: A Review", Nanomicor Lett., Vol. 7, pp. 97-120, 2015.  https://doi.org/10.1007/s40820-014-0023-3
  6. M. Batzill, "Surface Science Studies of Gas Sensing Materials: SnO2", Sens., Vol. 6, No. 10, pp. 1345-1366, 2006.  https://doi.org/10.3390/s6101345
  7. J. -M. Ducere, A. Hemeryck, A. Esteve, M. D. Rouhani, G. Landa, P. Menini, C. Tropis, A. Maisonnat, P. Fau, and B. Chaudret, "A Computational Chemist Approach to Gas Sensors: Modeling the Response of SnO2 to CO, O2, and H2O Gases", J. Comput. Chem., Vol. 33, No. 3, pp. 247-258, 2012.  https://doi.org/10.1002/jcc.21959
  8. Z. Li, W. Zeng, and Q. Li, "SnO2 as a gas sensor in detection of volatile organic compounds: A review", Sens. Actuator A Phys., Vol. 346, pp. 113845-113863, 2022.  https://doi.org/10.1016/j.sna.2022.113845
  9. S. Maeng, S. W. Kim, D. H. Lee, S. E. Moon, K. C. Kim, and A. Maiti, "SnO2 Nanoslab as NO2 sensor: Identification of the NO2 Sensing Mechanism on a SnO2 surface", Appl. Mater. Interfaces, Vol. 6, No. 1, pp. 357-363, 2014.  https://doi.org/10.1021/am404397f
  10. F. Mitri, A. De Iacovo, M. D. Luca, A. Pecora, and L. Colace, "Lead sulphide colloidal quantum dots for room temperature NO2 gas sensors", Sci. Rep., Vol. 10, No. 1, pp. 12556-12564, 2020.  https://doi.org/10.1038/s41598-020-69478-x
  11. P. Sonar, K. P. Sreenivasan, T. Maddanimath, and K. Vijayamohanan, "Comparative behavior of CdS and CdSe quantum dots in 286 poly(3-hexylthiophene) based nanocomposites", Mater. Res. Bull., Vol. 41, No. 1, pp. 198-208, 2006.  https://doi.org/10.1016/j.materresbull.2005.07.032
  12. M. E. Gemayel, A. Narita, L. F. Dossel, R. S. Sundaram, A. Kiersnowski, W. Pisula, M. R. Hansen, A. C. Ferrari, E. Orgiu, X. Feng, K. Mullen, and P. Samori, "Graphene nanoribbon blends with P3HT for organic electronics", Nanoscale., Vol. 6, No.12, pp. 6301-6314, 2014.  https://doi.org/10.1039/C4NR00256C
  13. H. Liu, M. Li, O. Voznyy, L. Hu, Q. Fu, D. Zhou, Z. Xia, E. H. Sargent, and J. Tang, "Physically flexible, rapidresponse gas sensor 290 based on colloidal quantum dot solids", Adv. Mater., Vol. 26, No. 17, pp. 2718-2724, 2014.  https://doi.org/10.1002/adma.201304366
  14. S. H. Jin, Naidu, H. S. Jeon, S. M. Park, S. C. Kim, J. Lee, and Y. S. Gal, "Optimization of process parameters for high-efficiency polymer 292 photovoltaic devices based on P3HT:PCBM system", Sol. Energy Mater. Sol. Cells., Vol. 91, No. 13, pp. 1187-1193, 2017.  https://doi.org/10.1016/j.solmat.2007.04.001
  15. J. Kwon, S. Kim, J. Lee, C. Park, O. Kim, B. Xu, J. Bae, and S. Kang, "Uncooled Short-Wave Infrared Sensor Based on PbS Quantum Dots Using ZnO NPs", Nanomater., Vol. 9, No.7, pp. 926-934, 2019.  https://doi.org/10.3390/nano9070926
  16. X. Xin, Y. Zhang, X. Guan, J. Cao, W. Li, X. Long, and X. Tan, "Enhanced Performances of PbS Quantum-Dots-Modified MoS2 Composite for NO2 Detection at Room Temperature", ACS Appl. Mater. Interfaces, Vol. 11, No. 9, pp. 9438-9447, 2019. https://doi.org/10.1021/acsami.8b20984