Acknowledgement
This work was supported by the Technology Innovation Program funded by the Ministry of Trade, Industry and Energy, Republic of Korea (Project Number 20010851).
References
- R. Stocek, G. Heinrich, R. Kipscholl, and O. Kratina, "Cut & chip wear of rubbers in a range from low up to high severity conditions", Appl. Surf. Sci. Adv., 6, 100152 (2021).
- J. R. Beatty, "Testing Apparatus and Method for Measuring Cutting, Chipping and Abrasion Resistance", U.S. Patent 4,144,740 (1979).
- J. R. Beatty and B. J. Miksch, "A laboratory cutting and chipping tester for evaluating off-the road and heavy-duty tire treads", Rubber Chem. Technol., 55, 1531 (1982).
- J.-H. Ma, Y.-X. Wang, L.-Q. Zhang, and Y.-P. Wu, "Improvement of cutting and chipping resistance of carbon black-filled styrene butadiene rubber by addition of nanodispersed clay", J. Appl. Polym. Sci., 125, 3484 (2012).
- C. Nah, B. W. Jo, and S. Kaang, "Cut and chip resistance of NR-BR blend compounds", J. Appl. Polym. Sci., 68, 1537 (1998).
- R. Stocek, W. V. Mars, C. G. Robertson, and R. Kipscholl, "Characterizing rubber's resistance against chip and cut behavior", Rubber world, 257, 38 (2018).
- K. Elangovan, F. X. Josephraj, A. K. Murugesan, and B. Pandian, "Effect of crosslink density on cut and chip resistance of 100% SBR based tire tread compound", Mater. Plast., 58, 34 (2021).
- H. Kim and I. Jeon, "Wear and frictional behavior of tire rubber", Polym. Sci. Technol., 11, 592 (2000).
- J. H. Go and C. Nah, "Wear of rubber for tire", Polym. Sci. Technol., 6, 348 (1995).
- A. E. Juve and A. G Veith, "Abrasion-reinforcement: methods of evaluation", Rubber Chem. Technol., 35, 1276 (1962).
- ASTM D5963, "Standard Test Method for Rubber Property - Abrasion Resistance (Rotary Drum Abrader)".
- ISO 4649, "Rubber, vulcanized, or thermoplastic - Determination of abrasion resistance using a rotating cylindrical drum device".
- M. Scherbakov and M. R. Gurvich, "A method of wear characterization under cut, chip and chunk conditions", J. Elastom. Plast., 35, 73 (2003).
- M. Salehi, J. W. M. Noordermeer, L. A. E. M. Reuvekamp, W. K. Dierkes, and A. Blume, "Measuring rubber friction using a Laboratory Abrasion Tester (LAT100) to predict car tire dry ABS braking", Tribol. Int., 131, 191 (2019).
- M. Salehi, J. W. M. Noordermeer, L. A. E. M. Reuvekamp, T. Tolpekina, and A. Blume, "A new horizon for evaluating tire grip within a laboratory environment", Tribol. Lett., 68, 1 (2020).
- M. Heinz and K. A. Grosch, "A laboratory method to comprehensively evaluate abrasion, traction and rolling resistance of tire tread compounds", Rubber Chem. Technol., 80, 580 (2007).
- K. A. Grosch, "Correlation between road wear of tires and computer road wear simulation using laboratory abrasion data", Rubber Chem. Technol., 77, 791 (2004).
- M. Heinz, "A universal method to predict wet traction behaviour of tire tread compounds in the laboratory", J. Rubber Res., 13, 91 (2010).
- K. A. Grosch, "Rubber abrasion and tire wear", Rubber Chem. Technol., 81, 470 (2008).
- R. Stocek, W. V. Mars, R. Kipscholl, and C. G. Robertson, "Characterisation of cut and chip behaviour for NR, SBR and BR compounds with an instrumented laboratory device", Plast. Rubber Compos., 48, 14 (2019).
- S. Ahmad, Z. S. Lee, and S. E. Katrenick., "Cutting and chipping resistant tread for heavy service pneumatic off-the-road tires", US4703079 (1987).
- P. J. Kole, A. J. Lohr, F. G. A. J. V. Belleghem, and A. M. J. Ragas, "Wear and tear of tyres: A stealthy source of microplastics in the environment", Int. J. Environ. Res. Public Health, 14, 1265 (2017).
- Z. Luo, X. Zhou, Y. Su, H. Wang, R. Yu, S. Zhou, E. G. Xu, and B. Xing, "Environmental occurrence, fate, impact, and potential solution of tire microplastics: similarities and differences with tire wear particles", Sci. Total Environ., 795, 148902 (2021).
- S. Wagner, T. Huffer, P. Klockner, M. Wehrhahn, T. Hofmann, and T. Reemtsma, "Tire wear particles in the aquatic environment-a review on generation, analysis, occurrence, fate and effects", Water Res., 139, 83 (2018).
- M. L. Kreider, J. M. Panko, B. L. McAtee, L. I. Sweet, and B. L. Finley, "Physical and chemical characterization of tire-related particles: comparison of particles generated using different methodologies", Sci. Total Environ., 408, 652 (2010).
- A. Muller, B. Kocher, K. Altmann, and U. Braun, "Determination of tire wear markers in soil samples and their distribution in a roadside soil", Chemosphere, 294, 133653 (2022).
- J.-S. Youn, Y.-M. Kim, M. Z. Siddiqui, A. Watanabe, S. Han, S. Jeong, Y.-W. Jung, and K.-J. Jeon, "Quantification of tire wear particles in road dust from industrial and residential areas in Seoul, Korea", Sci. Total Environ., 784, 147177 (2021).
- J. Wu, L. Chen, Y. Wang, B. Su, Z. Cui, and D. Wang, "Effect of temperature on wear performance of aircraft tire tread rubber", Polym. Test, 79, 106037 (2019).
- G. Ryu, D. Kim, S. Song, K. Hwang, and W. Kim, "Effect of molecular weight of epoxidized liquid isoprene rubber as a processing aid on the vulcanizate structure of silica filled NR compounds", Elast. Compos., 56, 223 (2021).
- M. Iz, D. Kim, K. Hwang, W. Kim, G. Ryu, S. Song, and W. Kim, "The effects of liquid butadiene rubber and resins as processing aids on the physical properties of SSBR/silica compounds", Elast. Compos., 55, 289 (2020).
- Y. P. Wu, Y. Zhou, J. L. Li, H. D. Zhou, J. M. Chen, and H. C. Zhao, "A comparative study on wear behavior and mechanism of styrene butadiene rubber under dry and wet conditions", Wear, 356-357, 1 (2016).
- S.-S. Choi, S. R. Yang, E. Chae, and C. E. Son, "Influence of carbon black contents and rubber compositions on formation of wear debris of rubber vulcanizates", Elast. Compos., 55, 108 (2020).
- C. E. Son, S. R. Yang, and S.-S. Choi, "Abrasion behaviors of NR/BR compounds using laboratory abrasion tester", Elast. Compos., 56, 12 (2021).
- E. Chae, S. R. Yang, and S.-S. Choi, "Test method for abrasion behavior of tire tread compounds using the wear particles", Polym. Test, 115, 107758 (2022).
- U. Jung and S.-S. Choi, "Classification and characterization of tire-road wear particles in road dust by density", Polymers, 14, 1005 (2022).
- V. Spanheimer and D. Katrakova-Kruger, "Analysis of tire wear airstrip particles (TWAP)", Sci. Rep., 12, 15841 (2022).
- M. Kovochich, J. A. Parker, S. C. Oh, J. P. Lee, S. Wagner, T. Reemtsma, and K. M. Unice, "Characterization of individual tire and road wear particles in environmental road dust, tunnel dust, and sediment", Environ. Sci. Technol. Lett., 8, 1057 (2021).
- U. Y. Jung and S.-S. Choi, "A variety of particles including tire wear particles produced on the road", Elast. Compos., 56, 85 (2021).
- E. Chae, U. Jung, and S.-S. Choi, "Quantification of tire tread wear particles in microparticles produced on the road using oleamide as a novel marker", Environ. Pollut., 288, 117811 (2021).
- F. Sommer, V. Dietze, A. Baum, J. Sauer, S. Gilge, C. Maschowski, and R. Giere, "Tire abrasion as a major source of microplastics in the environment", Aerosol Air Qual. Res., 18, 2014 (2018).
- I. Jarlskog, D. Jaramillo-Vogel, J. Rausch, S. Perseguers, M. Gustafsson, A.-M. Stromvall, and Y. Andersson-Skold, "Differentiating and quantifying carbonaceous (tire, bitumen, and road marking wear) and non-carbonaceous (metals, minerals, and glass beads) non-exhaust particles in road dust samples from a traffic environment", Water Air Soil Pollut., 233, 375 (2022).