DOI QR코드

DOI QR Code

Characteristics in Size Distributions and Morphologies of Wear Particles Depending on Types of Abrasion Testers

  • Received : 2023.05.09
  • Accepted : 2023.05.31
  • Published : 2023.06.30

Abstract

Abrasion tests of an SBR compound were conducted using four different types of abrasion testers (cut and chip, Lambourn, DIN, and LAT100). The abrasion test results were analyzed in terms of size distributions and morphologies of the wear particles. Most wear particles were larger than 1000 ㎛. The wear particle size distributions tended to decrease as the particle size decreased. Except for the Lambourn abrasion test, the wear particles smaller than 212 ㎛ were rarely generated by the other three abrasion tests, implying that small wear particles were produced through friction by introducing talc powder. Shapes of the wear particles varied depending on the abrasion testers. The wear particles generated from the Lambourn abrasion tester had stick-like shapes. The cut and chip abrasion test showed a clear abrasion pattern, but the DIN abrasion test did not show any specific abrasion pattern. The Lambourn and LAT100 abrasion tests showed irregular abrasion patterns.

Keywords

Acknowledgement

This work was supported by the Technology Innovation Program funded by the Ministry of Trade, Industry and Energy, Republic of Korea (Project Number 20010851).

References

  1. R. Stocek, G. Heinrich, R. Kipscholl, and O. Kratina, "Cut & chip wear of rubbers in a range from low up to high severity conditions", Appl. Surf. Sci. Adv., 6, 100152 (2021). 
  2. J. R. Beatty, "Testing Apparatus and Method for Measuring Cutting, Chipping and Abrasion Resistance", U.S. Patent 4,144,740 (1979). 
  3. J. R. Beatty and B. J. Miksch, "A laboratory cutting and chipping tester for evaluating off-the road and heavy-duty tire treads", Rubber Chem. Technol., 55, 1531 (1982). 
  4. J.-H. Ma, Y.-X. Wang, L.-Q. Zhang, and Y.-P. Wu, "Improvement of cutting and chipping resistance of carbon black-filled styrene butadiene rubber by addition of nanodispersed clay", J. Appl. Polym. Sci., 125, 3484 (2012). 
  5. C. Nah, B. W. Jo, and S. Kaang, "Cut and chip resistance of NR-BR blend compounds", J. Appl. Polym. Sci., 68, 1537 (1998). 
  6. R. Stocek, W. V. Mars, C. G. Robertson, and R. Kipscholl, "Characterizing rubber's resistance against chip and cut behavior", Rubber world, 257, 38 (2018). 
  7. K. Elangovan, F. X. Josephraj, A. K. Murugesan, and B. Pandian, "Effect of crosslink density on cut and chip resistance of 100% SBR based tire tread compound", Mater. Plast., 58, 34 (2021). 
  8. H. Kim and I. Jeon, "Wear and frictional behavior of tire rubber", Polym. Sci. Technol., 11, 592 (2000). 
  9. J. H. Go and C. Nah, "Wear of rubber for tire", Polym. Sci. Technol., 6, 348 (1995). 
  10. A. E. Juve and A. G Veith, "Abrasion-reinforcement: methods of evaluation", Rubber Chem. Technol., 35, 1276 (1962). 
  11. ASTM D5963, "Standard Test Method for Rubber Property - Abrasion Resistance (Rotary Drum Abrader)". 
  12. ISO 4649, "Rubber, vulcanized, or thermoplastic - Determination of abrasion resistance using a rotating cylindrical drum device". 
  13. M. Scherbakov and M. R. Gurvich, "A method of wear characterization under cut, chip and chunk conditions", J. Elastom. Plast., 35, 73 (2003). 
  14. M. Salehi, J. W. M. Noordermeer, L. A. E. M. Reuvekamp, W. K. Dierkes, and A. Blume, "Measuring rubber friction using a Laboratory Abrasion Tester (LAT100) to predict car tire dry ABS braking", Tribol. Int., 131, 191 (2019). 
  15. M. Salehi, J. W. M. Noordermeer, L. A. E. M. Reuvekamp, T. Tolpekina, and A. Blume, "A new horizon for evaluating tire grip within a laboratory environment", Tribol. Lett., 68, 1 (2020). 
  16. M. Heinz and K. A. Grosch, "A laboratory method to comprehensively evaluate abrasion, traction and rolling resistance of tire tread compounds", Rubber Chem. Technol., 80, 580 (2007). 
  17. K. A. Grosch, "Correlation between road wear of tires and computer road wear simulation using laboratory abrasion data", Rubber Chem. Technol., 77, 791 (2004). 
  18. M. Heinz, "A universal method to predict wet traction behaviour of tire tread compounds in the laboratory", J. Rubber Res., 13, 91 (2010). 
  19. K. A. Grosch, "Rubber abrasion and tire wear", Rubber Chem. Technol., 81, 470 (2008). 
  20. R. Stocek, W. V. Mars, R. Kipscholl, and C. G. Robertson, "Characterisation of cut and chip behaviour for NR, SBR and BR compounds with an instrumented laboratory device", Plast. Rubber Compos., 48, 14 (2019). 
  21. S. Ahmad, Z. S. Lee, and S. E. Katrenick., "Cutting and chipping resistant tread for heavy service pneumatic off-the-road tires", US4703079 (1987). 
  22. P. J. Kole, A. J. Lohr, F. G. A. J. V. Belleghem, and A. M. J. Ragas, "Wear and tear of tyres: A stealthy source of microplastics in the environment", Int. J. Environ. Res. Public Health, 14, 1265 (2017). 
  23. Z. Luo, X. Zhou, Y. Su, H. Wang, R. Yu, S. Zhou, E. G. Xu, and B. Xing, "Environmental occurrence, fate, impact, and potential solution of tire microplastics: similarities and differences with tire wear particles", Sci. Total Environ., 795, 148902 (2021). 
  24. S. Wagner, T. Huffer, P. Klockner, M. Wehrhahn, T. Hofmann, and T. Reemtsma, "Tire wear particles in the aquatic environment-a review on generation, analysis, occurrence, fate and effects", Water Res., 139, 83 (2018). 
  25. M. L. Kreider, J. M. Panko, B. L. McAtee, L. I. Sweet, and B. L. Finley, "Physical and chemical characterization of tire-related particles: comparison of particles generated using different methodologies", Sci. Total Environ., 408, 652 (2010). 
  26. A. Muller, B. Kocher, K. Altmann, and U. Braun, "Determination of tire wear markers in soil samples and their distribution in a roadside soil", Chemosphere, 294, 133653 (2022). 
  27. J.-S. Youn, Y.-M. Kim, M. Z. Siddiqui, A. Watanabe, S. Han, S. Jeong, Y.-W. Jung, and K.-J. Jeon, "Quantification of tire wear particles in road dust from industrial and residential areas in Seoul, Korea", Sci. Total Environ., 784, 147177 (2021). 
  28. J. Wu, L. Chen, Y. Wang, B. Su, Z. Cui, and D. Wang, "Effect of temperature on wear performance of aircraft tire tread rubber", Polym. Test, 79, 106037 (2019). 
  29. G. Ryu, D. Kim, S. Song, K. Hwang, and W. Kim, "Effect of molecular weight of epoxidized liquid isoprene rubber as a processing aid on the vulcanizate structure of silica filled NR compounds", Elast. Compos., 56, 223 (2021). 
  30. M. Iz, D. Kim, K. Hwang, W. Kim, G. Ryu, S. Song, and W. Kim, "The effects of liquid butadiene rubber and resins as processing aids on the physical properties of SSBR/silica compounds", Elast. Compos., 55, 289 (2020). 
  31. Y. P. Wu, Y. Zhou, J. L. Li, H. D. Zhou, J. M. Chen, and H. C. Zhao, "A comparative study on wear behavior and mechanism of styrene butadiene rubber under dry and wet conditions", Wear, 356-357, 1 (2016). 
  32. S.-S. Choi, S. R. Yang, E. Chae, and C. E. Son, "Influence of carbon black contents and rubber compositions on formation of wear debris of rubber vulcanizates", Elast. Compos., 55, 108 (2020). 
  33. C. E. Son, S. R. Yang, and S.-S. Choi, "Abrasion behaviors of NR/BR compounds using laboratory abrasion tester", Elast. Compos., 56, 12 (2021). 
  34. E. Chae, S. R. Yang, and S.-S. Choi, "Test method for abrasion behavior of tire tread compounds using the wear particles", Polym. Test, 115, 107758 (2022). 
  35. U. Jung and S.-S. Choi, "Classification and characterization of tire-road wear particles in road dust by density", Polymers, 14, 1005 (2022). 
  36. V. Spanheimer and D. Katrakova-Kruger, "Analysis of tire wear airstrip particles (TWAP)", Sci. Rep., 12, 15841 (2022). 
  37. M. Kovochich, J. A. Parker, S. C. Oh, J. P. Lee, S. Wagner, T. Reemtsma, and K. M. Unice, "Characterization of individual tire and road wear particles in environmental road dust, tunnel dust, and sediment", Environ. Sci. Technol. Lett., 8, 1057 (2021). 
  38. U. Y. Jung and S.-S. Choi, "A variety of particles including tire wear particles produced on the road", Elast. Compos., 56, 85 (2021). 
  39. E. Chae, U. Jung, and S.-S. Choi, "Quantification of tire tread wear particles in microparticles produced on the road using oleamide as a novel marker", Environ. Pollut., 288, 117811 (2021). 
  40. F. Sommer, V. Dietze, A. Baum, J. Sauer, S. Gilge, C. Maschowski, and R. Giere, "Tire abrasion as a major source of microplastics in the environment", Aerosol Air Qual. Res., 18, 2014 (2018). 
  41. I. Jarlskog, D. Jaramillo-Vogel, J. Rausch, S. Perseguers, M. Gustafsson, A.-M. Stromvall, and Y. Andersson-Skold, "Differentiating and quantifying carbonaceous (tire, bitumen, and road marking wear) and non-carbonaceous (metals, minerals, and glass beads) non-exhaust particles in road dust samples from a traffic environment", Water Air Soil Pollut., 233, 375 (2022).