DOI QR코드

DOI QR Code

소규모 지하굴착에서 지중경사계와 변형률계의 최적 위치 선정에 대한 연구

A Study on the Optimal Location of the Inclinometer and Strain Gauge in Small-Scale Underground Excavation

  • Gichun Kang (Department of Civil Engineering, College of Engineering, Gyeongsang National University) ;
  • Jinuk Park (Department of Civil Engineering, College of Engineering, Gyeongsang National University) ;
  • Byeongjin Roh (Department of Civil Engineering, College of Engineering, Gyeongsang National University) ;
  • Jiahao Sun (Department of Civil Engineering, College of Engineering, Gyeongsang National University) ;
  • Seong-Kyu Yun (Engineering, Research Institute, Gyeongsang National University)
  • 투고 : 2023.05.10
  • 심사 : 2023.06.11
  • 발행 : 2023.06.30

초록

현재 국내에서는 흙막이 가시설 공사에서 계측기 설치 및 운영기준이 모호하여 공사현장에서 흙막이 공사의 붕괴사고를 사전에 예방하지 못하여 경제적 피해가 발생한 사례가 있다. 따라서 본 연구에서는 흙막이 가시설 설계도면에 제시되어 있는 계측기 중 지중경사계 및 변형률계의 적합한 설치 위치를 찾고자 수치해석을 통한 연구를 진행하였다. 해석결과 지중경사계의 설치 위치는, 평면변형 해석의 경우 가시설의 우각부에서, 3차원 해석의 경우는 굴착면의 중심부에서 가장 많은 변위가 일어나는 것으로 나타났다. 지반응력과 모멘트를 종합적으로 분석하였을 때 우각부가 취약지점으로 판단된다. 변형률계의 경우 평면 변형 해석과 3차원 해석에서 버팀대 끝단과 맞버팀대가 접하는 띠장 접속부에서 최대 휨 응력이 발생하였다. 이 지점에서 취약 부분으로 사고예방을 위해서는 접속부에 중점적 설치 및 관리가 필요한 것으로 분석된다.

Currently, there are cases in Korea where economic damage has occurred due to the ambiguity instrument installation and operation standards in the construction of temporary earth retaining wall, failing to prevent collapse of temporary earth retaining wall at the construction site in advance. Therefore, in this study, a numerical analysis was conducted to find the appropriate installation location of the inclinometer and strain gauge among the installed instruments shown in the design drawing of the temporary earth retaining wall. As a results, It was found that the installation position of the underground inclinometer is the corner of the retaining wall in the case of plane-deformation analysis, and the most displacement occurs in the center of the excavation surface in the case of 3D analysis. When the stress and moment are comprehensively analyzed, the corner is judged to be a vulnerable point. In the case of the strain gauge, In plane-deformation analysis and 3D analysis, the maximum bending stress occurred at the wale connection where the end of the strut and the counter strut are in contact. At this point, it is analyzed that it is necessary to focus on installing and managing the connection to prevent accidents from being vulnerable.

키워드

과제정보

This reserch was partially supported by Academic Research Service for Establishing a Practical Manual for Measurement of Underground Excavation Work project funded by the Korea Land and Housing Corporation and by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2020R1I1A3067248).

참고문헌

  1. Do, J. N., Ryu, W. Y., An, Y. H. and Chun, B. S. (2010), "Field Measurement and Numerical Approach for Lateral Deformation of Retaining Wall", Korean Society of Ground Environmental Engineering, Vol.11, No.2, pp.61-68.
  2. Jeong, S. S., Sim, J. U. and Lee, S.-J. (201 6), "A Study on the Rational Application of 3D Numerical Analysis for Anchored Earth Retaining Wall", Journal of the Korean Geotechnical Society, Vol.32, No.4, pp.29-39. https://doi.org/10.7843/kgs.2016.32.4.29
  3. Kim, D. W. (2009), "Behavior of Temporary Earth Retaining Structure Supported by Prestressed Steel Pipe Strut", Master's thesis, Graduate School of Industry, Pukyong National University.
  4. Kim, I. and Lee, S.D., (2007), "Behavior of Tunnel Due to Adjacent Ground Excavation with Pre-loading on Braced Wall", Journal of the Korean Geotechnical Society, Vol.23, No.10, pp.163-174. https://doi.org/10.7843/KGS.2007.23.10.163
  5. Kim, J. T., Cho, G. C., Kang, S. J., Kim, K. J. and Hong, E. S., (2018), "3-Dimentional numerical study on dynamic behavior of connection between vertical shaft and tunnel under earthquake loading", Korean Tunnel Underground Space Society, Vol.20, No.5, pp.887-897.
  6. Kim, M. S. (2012), "The role of field monitoring to prevent failure during ground excavation works. Master's thesis", Chung-Ang University Graduate School.
  7. Kim, S. H. (2020), "Safety Assessment of Earth - Retaining Wall in the Asymmetric Excavation Work Using Plane Deformation Analysis Method", Master's thesis, Graduate School of Transportation, Korea National University of Transportation.
  8. Korea Land & Housing Corporation (2020), "LHCS 11 10 15-Ground Measurement under Construction", p.5.
  9. Korea Land & Housing Corporation (2021), "LHCS 21 30 00-Construction of Temporary Soil Support", p.11.
  10. Korea Land & Housing Corporation (2022), "Design Guidelines(Civil Engineering)", pp.34-37.
  11. Lee, S. and Kim, S.G. (2008), "A Study on Deformation Analysis of the Earth Retaining Wall", Journal of the Korean Geotechnical Society, Vol.24, No.2, pp.27-36.
  12. Lin, D. G. and Woo, S. M. (2007), "Three Dimensional Analyses of Deep Excavation in Taipei 101 Construction Project", Journal of GeoEngineering, Vol.2 No.1, pp.29-41.
  13. Ministry of Land, Infrastructure and Transport (2021a), "KCS 11 10 15-Ground Measurement under Construction", p.7.
  14. Ministry of Land, Infrastructure and Transport (2021b), "KDS 11 10 15-Ground Measurement", p.7.
  15. Ministry of Land, Infrastructure and Transport (2022a), "KCS 21 30 00-Construction of Temporary Soil Support", p.26.
  16. Ministry of Land, Infrastructure and Transport (2022b), "KDS 21 30 00-Criteria for design of Temporary Soil Support", pp.50-55.
  17. Ministry of Land, Infrastructure and Transport (2022c), "Standard Manual for Underground Safety Evaluation", pp.169-178.
  18. Park, C. S. and Joung, S. M. (2020), "Numerical Investigations on the Excavation Width and Property of Deformation of Earth Retaining Wall", Journal of the Korean Geotechnical Society, Vol.36, No.12, pp.57-68.
  19. Seoul Metropolitan Government Urban Infrastructure Headquarters (2015), "Improvement of Seoul Subway Measurement Management Guidelines", pp.17-76.