DOI QR코드

DOI QR Code

An analytical model of the additional confining stress in a prestress-reinforced embankment

  • Fang Xu (School of Civil Engineering, Central South University) ;
  • Wuming Leng (School of Civil Engineering, Central South University) ;
  • Xi Ai (School of Civil Engineering, Central South University) ;
  • Hossein Moayedi (Institute of Research and Development, Duy Tan University) ;
  • Qishu Zhang (School of Civil Engineering, Central South University) ;
  • Xinyu Ye (School of Civil Engineering, Central South University)
  • 투고 : 2022.12.12
  • 발행 : 2023.05.25

초록

Using a device composed of two lateral pressure plates (LPPs) and a steel reinforcement bar to apply horizontal pressure on slope surfaces, a newly developed prestress-reinforced embankment (PRE) is proposed, to which can be adopted in strengthening railway subgrades. In this study, an analytical model, which is available of calculating additional confining stress (σH) at any point in a PRE, was established based on the theory of elasticity. In addition, to verify the proposed analytical model, three dimensional (3D) finite element analyses were conducted and the feasibility in application was also identified and discussed. In order to study the performance of the PRE, the propagation of σH in a PRE was analyzed and discussed based on the analytical model. For the aim of convenience in application, calculation charts were developed in terms of three dimensionless parameters, and they can be used to accurately and efficiently predict the σH in a PRE regardless of the embankment slope ratio and LPP side length ratio. Finally, the potential applications of the proposed analytical model were discussed.

키워드

과제정보

The research described in this paper was financially supported by the the National Natural Science Foundation of China (Grant No. 51978672, 51709284, and 51678572) and the Graduate Innovation Project of Central South University (Grant No. 2019zzts283).

참고문헌

  1. Bi, J.F., Luo, X.Q., Zhang, H.T. and Shen, H. (2019), "Stability analysis of complex rock slopes reinforced with prestressed anchor cables and anti-shear cavities", B. Eng. Geol. Environ., 78(3), 2027-2039. https://doi.org/10.1007/s10064-017-1171-8
  2. Bobet, A. and Einstein, H.H. (2011), "Tunnel reinforcement with rockbolts", Tunn. Undergr. Sp. Tech., 26, 100-123. https://doi.org/10.1016/j.tust.2010.06.006
  3. Boussinesq, J. (1885), Application des potentiels a l'etude de l'equilibre et du mouvement des solides elastiques, Gauthier-Villars, Paris, France.
  4. Budhu, M. (2011), Soil Mechanics and Foundations, John Wiley & Sons, New York, NY, USA.
  5. Carranza-Torres, C. (2009), "Analytical and numerical study of the mechanics of rockbolt reinforcement around tunnels in rock masses", Rock Mech. Rock Eng., 42, 175-228. https://doi.org/10.1007/s00603-009-0178-2
  6. Castro-Fresno, D., Lopez, Q.L., Blanco-Fernandez, E. and Zamora-Barraza, D. (2009), "Design and evaluation of two laboratory tests for the nets of a flexible anchored slope stabilization system", Geotech. Test. J., 32(4), 1-10. https://doi.org/10.1520/GTJ101218
  7. Cerruti, V. (1882), Ricerche intorno all'equilibrio de corpi elastici isotropi, Atti della R. Accademia dei Lincei, Memoriae della classe di scienze fisiche, matematiche e naturali, Coi tipi del Salviucci, Roma, Italy.
  8. Chen, R.P., Chen, J.M. and Wang, H.L. (2014), "Recent research on the track-subgrade of high-speed railways", J. Zhejiang Univ.-Sc. A, 15(12), 1034-1038. https://doi.org/10.1631/jzus.A1400342
  9. Das, A. and Bajpai, P.K. (2018), "A hypo-plastic approach for evaluating railway ballast degradation", Acta Geotech., 13(5), 1085-1102. https://doi.org/10.1007/s11440-017-0584-7
  10. Das, B. and Sobhan, K. (2014), Principles of Geotechnical Engineering, Cengage Learning, Boston, MA, USA.
  11. Dawson, A., Mundy, M. and Huhtala, M. (2000), "European research into granular material for pavement bases and subbases", Transport. Res. Rec., 1721(1), 91-99. https://doi.org/10.3141/1721-11
  12. Deng, D.P., Zhao, L.H. and Li, L. (2017), "Limit-equilibrium analysis on stability of a reinforced slope with a grid beam anchored by cables", Int. J. Geomech., 17(9), article no. 06017013. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000964
  13. Dong, J., Wu, Z.H., Li, X. and Chen, H.Y. (2018), "Dynamic response and pile-soil interaction of a heavy-haul railway embankment slope reinforced by micro-piles", Comput. Geotech., 100, 144-157. https://doi.org/10.1016/j.compgeo.2018.04.005
  14. Esmaeili, M. and Arbabi, B. (2015), "Railway embankments stabilization by tied back-to-back system", Comput. Geotech., 67, 110-120. https://doi.org/10.1016/j.compgeo.2015.02.019
  15. Esmaeili, M., Naderi, B., Neyestanaki, H.K. and Khodaverdian, A. (2018), "Investigating the effect of geogrid on stabilization of high railway embankments", Soils Found., 58(2), 319-332. https://doi.org/10.1016/j.sandf.2018.02.005
  16. Fahimifar, A. and Ranjbarnia, M. (2009), "Analytical approach for the design of active grouted rockbolts in tunnel stability based on convergence-confinement method", Tunn. Undergr. Sp. Tech., 24, 363-375. https://doi.org/10.1016/j.tust.2008.10.005
  17. German Railway Standard Rail 836 (2008), Erdbauwerkeplanen, bauen und instandhalten.
  18. Gong, Q.M. and Zhou, S.H. (2007), Railway Subgrade Engineering, China Railway Publishing House, Beijing, China.
  19. Guan, Z.C., Jiang, Y.J., Tanabasi, Y. and Huang, H.W. (2007), "Reinforcement mechanics of passive bolts in conventional tunneling", Int. J. Rock Mech. Min. Sci., 44, 625-636. https://doi.org/10.1016/j.ijrmms.2006.10.003
  20. Guo, X.Q., Mao, X.B., Ma, C. and Huang, J.L. (2013), "Bolt support mechanism based on elastic theory", Int. J. Min. Sci. Techno., 23(4), 469-474. https://doi.org/10.1016/j.ijmst.2013.07.002
  21. Kece, E., Reikalas, V., DeBold, R., Ho, C.L., Robertson, I. and Forde, M.C. (2019), "Evaluating ground vibrations induced by high-speed trains", Transp. Geotech., 20, article no.100236. https://doi.org/10.1016/j.trgeo.2019.03.004
  22. Kennedy, J.H., Woodward, P.K., Banimahd, M. and Medero, G.M. (2012), "Railway track performance study using a new testing facility", P. I. Civil Eng.-Geotec., 165(5), 309-319. https://doi.org/10.1680/geng.10.00075
  23. Khan, M.R. and Dasaka, S.M. (2019), "Quantification of ground-vibrations generated by high speed trains in ballasted railway tracks", Transp. Geotech., 20, article no. 100245. https://doi.org/10.1016/j.trgeo.2019.100245
  24. Lazorenko, G., Kasprzhitskii, A., Khakiev, Z. and Yavna, V. (2019), "Dynamic behavior and stability of soil foundation in heavy haul railway tracks: A review", Constr. Build. Mater., 205, 111-136. https://doi.org/10.1016/j.conbuildmat.2019.01.184
  25. Li, D.Q. (2018), "25 years of heavy axle load railway subgrade research at the facility for accelerated service testing (FAST)", Transp. Geotech., 17(part A), 51-60. https://doi.org/10.1016/j.trgeo.2018.09.003
  26. Li, S.L., Wang, X., Liu, H.Z., Zhou, Y., Su, W. and Di, H. (2020), "Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement", Smart Struct. Syst., Int. J., 26(5), 591-603. https://doi.org/10.12989/sss.2020.26.5.591
  27. Lv, W.T. and Wang, Y.H. (2004), "Dynamic stress analysis of subgrade-bridge transition section of Qin-Shen railway", Chin. J. Rock Mech. Eng., 23(3), 500-504.
  28. Marjani, S.R. and Younesian, D. (2019), "Application of dithering control for the railway wheel squealing noise mitigation", Smart Struct. Syst., Int. J., 23(4), 347-357. https://doi.org/10.12989/sss.2019.23.4.347
  29. Mei, H.H., Leng, W.M, Nie, R.S., Liu, W.J., Chen, C. and Wu, X.W. (2019), "Random distribution characteristics of peak dynamic stress on the subgrade surface of heavy-haul railways considering track irregularities", Soil Dyn. Earthq. Eng., 116, 205-214. https://doi.org/10.1016/j.soildyn.2018.10.013
  30. National Railway Administration of the People's Republic of China (2014), Code for design of high speed railway /TB 10621-2014), China Railway Publishing House, Beijing, China.
  31. Ozhan, H.O. and Guler, E. (2018), "Critical tendon bond length for prestressed ground anchors in pullout performance tests conducted in sand", Int. J. Civ. Eng., 16(10), 1329-1340. https://doi.org/10.1007/s40999-017-0261-0
  32. Palop, K., Ivanovic, A. and Brennan, A.J. (2013), "Centrifuge modeling of the nondestructive testing of soil anchorages", J. Geotech. Geoenviron., 139(6), 880-891. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000788
  33. Papanastassopoulou-Tsatsanifou, F. (1983), "Investigation of effect of rock bolts on stress distribution around underground excavations", Proceedings of the International Symposium on Rock Bolting, Abisko, Sweden, August-September.
  34. Roghani, A., Macciotta, R. and Hendry, M.T. (2017), "Quantifying the effectiveness of methods used to improve railway track performance over soft subgrades: Methodology and case study", J. Transp. Eng. A-Syst., 143(9), article no. 04017043. https://doi.org/10.1061/JTEPBS.0000071
  35. Sayeed, M.A. and Shahin, M.A. (2018), "Design of ballasted railway track foundations using numerical modelling. Part I: Development", Can. Geotech. J., 55(3), 353-368. https://doi.org/10.1139/cgj-2016-0633
  36. Shi, K.Y., Wu, X.P., Liu, Z. and Dai, S.L. (2019), "Coupled calculation model for anchoring force loss in a slope reinforced by a frame beam and anchor cables", Eng. Geol., 260, article no. 105245. https://doi.org/10.1016/j.enggeo.2019.105245
  37. Showkati, A., Maarefvand, P. and Hassani, H. (2015), "Stresses induced by post-tensioned anchor in jointed rock mass", J. Cent. South Univ., 22(4), 1463-1476. https://doi.org/10.1007/s11771-015-2664-x
  38. Showkati, A., Maarefvand, P. and Hassani, H. (2016), "An analytical solution for stresses induced by a post-tensioned anchor in rocks containing two perpendicular joint sets", Acta Geotech., 11(2), 415-432. https://doi.org/10.1007/s11440-015-0371-2
  39. Skrypnyk, R., Nielsen, J.C.O., Ekh, M. and Palsson, B.A. (2019), "Metamodelling of wheel-rail normal contact in railway crossings with elasto-plastic material behaviour", Eng. Comput., 35(1), 139-155. https://doi.org/10.1007/s00366-018-0589-3
  40. Sun, Q., Indraratna, B. and Ngo, N.T. (2019), "Effect of increase in load and frequency on the resilience of railway ballast", Geotechnique, 69(9), 833-840. https://doi.org/10.1680/jgeot.17.P.302
  41. Tang, L., Yan, M.H., Ling, X.Z. and Tian, S. (2016), "Dynamic behaviours of railway's base course materials subjected to long-term low-level cyclic loading: experimental study and empirical model", Geotechnique, 67(6), 537-545. https://doi.org/10.1680/jgeot.16.P.152
  42. Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil Mechanics in Engineering Practice, John Wiley & Sons, New York, NY, USA.
  43. Wang, Y.X. (2019), "Study on model test system of a new prestressed subgrade and analysis of the additional stress field", Master Dissertation; Central South University, Changsha, China.
  44. Wang, J., Liu, S. and Yang, W.B. (2018), "Dynamics shakedown analysis of slab track substructures with reference to critical speed", Soil Dyn. Earthq. Eng., 106, 1-13. https://doi.org/10.1016/j.soildyn.2017.12.004
  45. Wang, H., Zhu, Q.X., Li, J., Mao, J.X., Hu, S.T. and Zhao, X.X. (2019), "Identification of moving train loads on railway bridge based on strain monitoring", Smart Struct. Syst., Int. J., 23(3), 263-278. https://doi.org/10.12989/sss.2019.23.3.263
  46. Wang, K., Cao, W.X., Su, Z.Q., Wang, P.X., Zhang, X.J., Chen, L.J., Guan, R.Q. and Lu, Y. (2020), "Structural health monitoring of high-speed railway tracks using diffuse ultrasonic wave-based condition contrast: theory and validation", Smart Struct. Syst., Int. J., 26(2), 227-239. https://doi.org/10.12989/sss.2020.26.2.227
  47. Wu, Y., Mao, X.B., Huang, J.L., Sun, F.J. and Yao, B.H. (2010), "Action mechanism of a mechanical end-anchorage bolt", Int. J. Min. Sci. Technol., 20(4), 625-628. https://doi.org/10.1016/S1674-5264(09)60256-8
  48. Wu, Q.H., Li, X.B., Weng, L., Li, Q.F., Zhu, Y.J. and Luo, R. (2019), "Experimental investigation of the dynamic response of prestressed rockbolt by using an SHPB-based rockbolt test system", Tunn. Undergr. Sp. Tech., 93, article no. 103088. https://doi.org/10.1016/j.tust.2019.103088
  49. Xiao, J.H., Juang, C.H., Xu, C.J., Li, X.W. and Wang, L. (2014), "Strength and deformation characteristics of compacted silt from the lower reaches of the Yellow River of China under monotonic and repeated loading", Eng. Geol., 178, 49-57. https://doi.org/10.1016/j.enggeo.2014.06.008
  50. Xu, F., Leng, W.M., Nie, R.S., Zhang, Q.S. and Yang, Q. (2018a), "New structure for strengthening soil embankments", Adv. Civ. Eng., 2018, article no. 4809034. https://doi.org/10.1155/2018/4809034
  51. Xu, F., Yang, Q., Liu, W.J., Leng, W.M., Nie, R.S. and Mei, H.H. (2018b), "Dynamic stress of subgrade bed layers subjected to train vehicles with large axle loads", Shock Vib., 2018, article no. 2916096. https://doi.org/10.1155/2018/2916096
  52. Xu, F., Zhai, B., Leng, W.M., Yang, Q., Leng, H.K. and Nie, R.S. (2020), "Probabilistic method for evaluating the permanent strain of unbound granular materials under cyclic traffic loading", Constr. Build. Mater., 251, article no. 118975. https://doi.org/10.1016/j.conbuildmat.2020.118975
  53. Zhai, B., Leng, W.M., Xu, F., Zhang, S., Ye, X.Y. and Leng, H.K. (2020), "Critical dynamic stress and shakedown limit criterion of coarse-grained subgrade soil", Transp. Geotech., 23, article no. 100354. https://doi.org/10.1016/j.trgeo.2020.100354