과제정보
The authors wish to acknowledge the financial support and advice given by Impact-Oriented Interdisciplinary Research Grant (IIRG007B-2019), private funding by SD Advance Engineering Sdn Bhd (PV032-2018), Advanced Shock and Vibration Research (ASVR) Group of University of Malaya and other project collaborators.
참고문헌
- Abdulkareem, M., Bakhary, N., Vafaei, M., Noor, N.M. and Mohamed, R.N. (2019), "Application of two-dimensional wavelet transform to detect damage in steel plate structures", Measurement, 146, 912-923. https://doi.org/10.1016/j.measurement.2019.07.027
- Bandara, R.P., Chan, T.H.T. and Thambiratnam, D.P. (2014), "Frequency response function based damage identification using principal component analysis and pattern recognition technique", Eng. Struct., 66, 116-128. https://doi.org/10.1016/j.engstruct.2014.01.044
- Bao, X.X., Li, C.L. and Xiong, C.B. (2015), "Noise elimination algorithm for modal analysis", Appl. Phys. Lett., 107(4), 5. https://doi.org/10.1063/1.4927642
- Bull, L., Worden, K., Manson, G. and Dervilis, N. (2018), "Active learning for semi-supervised structural health monitoring", J. Sound Vib., 437, 373-388. https://doi.org/10.1016/j.jsv.2018.08.040
- Bull, L.A., Rogers, T.J., Wickramarachchi, C., Cross, E.J., Worden, K. and Dervilis, N. (2019), "Probabilistic active learning: An online framework for structural health monitoring", Mech. Syst. Signal Process., 134, 20. https://doi.org/10.1016/j.ymssp.2019.106294
- Cevasco, D., Tautz-Weinert, J., Richmond, M., Sobey, A. and Kolios, A.J. (2022), "A damage detection and location scheme for offshore wind turbine jacket structures based on global modal properties", ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B-Mech. Eng., 8(2), 12. https://doi.org/10.1115/1.4053659
- Chang, C.M., Lin, T.K. and Chang, C.W. (2018), "Applications of neural network models for structural health monitoring based on derived modal properties", Measurement, 129, 457-470. https://doi.org/10.1016/j.measurement.2018.07.051
- Chen, S., Ong, Z.C., Lam, W.H., Lim, K.-S. and Lai, K.W. (2020a), "Operational damage identification scheme utilizing de-noised frequency response functions and artificial neural network", J. Nondestr. Eval., 39(3), 66. https://doi.org/10.1007/s10921-020-00709-x
- Chen, S.L., Ong, Z.C., Lam, W.H., Lim, K.S. and Lai, K.W. (2020b), "Unsupervised damage identification scheme using pca-reduced frequency response function and waveform chain code analysis", Int. J. Struct. Stab. Dyn., 20(8), 26. https://doi.org/10.1142/s0219455420500911
- Chen, Y., Zhao, Z.Y., Wu, H.Z., Chen, X., Xiao, Q.B. and Yu, Y.Q. (2022), "P fault anomaly detection of synchronous machine winding based on isolation forest and impulse frequency response analysis", Measurement, 188, 10. https://doi.org/10.1016/j.measurement.2021.110531
- Esfandiari, A., Nabiyan, M.S. and Rofooei, F.R. (2020), "Structural damage detection using principal component analysis of frequency response function data", Struct. Control Health Monit., 27(7), 21. https://doi.org/10.1002/stc.2550
- Ghannadi, P. and Kourehli, S.S. (2019), "Data-driven method of damage detection using sparse sensors installation by serepa", J. Civ. Struct. Health Monit., 9(4), 459-475. https://doi.org/10.1007/s13349-019-00345-8
- Janeliukstis, R., Rucevskis, S. and Kaewunruen, S. (2019), "Mode shape curvature squares method for crack detection in railway prestressed concrete sleepers", Eng. Fail. Anal., 105, 386-401. https://doi.org/https://doi.org/10.1016/j.engfailanal.2019.07.020
- Jayasundara, N., Thambiratnam, D.P., Chan, T.H.T. and Nguyen, A. (2020), "Damage detection and quantification in deck type arch bridges using vibration based methods and artificial neural networks", Eng. Fail. Anal., 109, 19. https://doi.org/10.1016/j.engfailanal.2019.104265
- Li, J., Dackermann, U., Xu, Y.-L. and Samali, B. (2011), "Damage identification in civil engineering structures utilizing pca-compressed residual frequency response functions and neural network ensembles", Struct. Control Health Monit., 18(2), 207-226. https://doi.org/10.1002/stc.369
- Lim, H.C., Ong, Z.C., Ismail, Z. and Khoo, S.Y. (2019), "A performance study of controlled impact timing on harmonics reduction in operational modal testing", J. Dyn. Syst. Measur. Control-Transact. ASME, 141(3). https://doi.org/10.1115/1.4041609
- Liu, C., Nagler, O., Tremmel, F., Unterreitmeier, M., Frick, J.J., Patil, R.P., Gu, X.W. and Senesky, D.G. (2022), "Cluster-based acoustic emission signal processing and loading rate effects study of nanoindentation on thin film stack structures", MSSP, 165, 18. https://doi.org/10.1016/j.ymssp.2021.108301
- Mekjavic, I. and Damjanovic, D. (2017), "Damage assessment in bridges based on measured natural frequencies", Int. J. Struct. Stab. Dyn., 17(2). https://doi.org/10.1142/s0219455417500225
- Mousavi, A.A., Zhang, C.W., Masri, S.F. and Gholipour, G. (2021), "Damage detection and localization of a steel truss bridge model subjected to impact and white noise excitations using empirical wavelet transform neural network approach", Measurement, 185, 19. https://doi.org/10.1016/j.measurement.2021.110060
- Nguyen, D.H., Tran-Ngoc, H., Bui-Tien, T., De Roeck, G. and Wahab, M.A. (2020), "Damage detection in truss bridges using transmissibility and machine learning algorithm: Application to nam o bridge", Smart Struct. Syst., Int. J., 26(1), 35-47. https://doi.org/10.12989/sss.2020.26.1.035
- Nick, H., Aziminejad, A., Hosseini, M.H. and Laknejadi, K. (2021), "Damage identification in steel girder bridges using modal strain energy-based damage index method and artificial neural network", Eng. Fail. Anal., 119, 20. https://doi.org/10.1016/j.engfailanal.2020.105010
- Ong, Z.C., Lim, H.C., Brandt, A., Ismail, Z. and Khoo, S.Y. (2019), "An inconsistent phase selection assessment for harmonic peaks elimination in operational modal testing", Arch. Appl. Mech., 89(12), 2415-2430. https://doi.org/10.1007/s00419-019-01584-3
- Padil, K.H., Bakhary, N., Abdulkareem, M., Li, J. and Hao, H. (2020), "Non-probabilistic method to consider uncertainties in frequency response function for vibration-based damage detection using artificial neural network", J. Sound Vib., 467, 115069. https://doi.org/https://doi.org/10.1016/j.jsv.2019.115069
- Porcu, M.C., Patteri, D.M., Melis, S. and Aymerich, F. (2019), "Effectiveness of the frf curvature technique for structural health monitoring", Constr. Build. Mater., 226, 173-187. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.07.123
- Sarmadi, H., Entezami, A., Salar, M. and De Michele, C. (2021), "Bridge health monitoring in environmental variability by new clustering and threshold estimation methods", J. Civil Struct. Health Monitor., 11(3), 629-644. https://doi.org/10.1007/s13349-021-00472-1
- Sha, G., Radzienski, M., Cao, M. and Ostachowicz, W. (2019), "A novel method for single and multiple damage detection in beams using relative natural frequency changes", MSSP, 132, 335-352. https://doi.org/https://doi.org/10.1016/j.ymssp.2019.06.027
- Siow, P.Y., Ong, Z.C., Khoo, S.Y. and Lim, K.S. (2021), "Damage sensitive pca-frf feature in unsupervised machine learning for damage detection of plate-like structures", Int. J. Struct. Stab. Dyn., 21(2), 29. https://doi.org/10.1142/s0219455421500280
- Solimine, J., Niezrecki, C. and Inalpolat, M. (2020), "An experimental investigation into passive acoustic damage detection for structural health monitoring of wind turbine blades", Struct. Health Monitor., 19(6), 1711-1725. https://doi.org/10.1177/1475921719895588
- Tran, C.J., Mora, O.E., Fayne, J.V. and Lenzano, M.G. (2019), "Unsupervised classification for landslide detection from airborne laser scanning", Geosciences, 9(5), p. 221. https://doi.org/10.3390/geosciences9050221
- Vafaei, M. and Alih, S.C. (2018), "Adequacy of first mode shape differences for damage identification of cantilever structures using neural networks", Neural Comput. Applicat., 30(8), 2509-2518. https://doi.org/10.1007/s00521-017-2846-6
- Wang, S. and Xu, M. (2019), "Modal strain energy-based structural damage identification: A review and comparative study", Struct. Eng. Int., 29(2), 234-248. https://doi.org/10.1080/10168664.2018.1507607
- Wickramasinghe, W.R., Thambiratnam, D.P. and Chan, T.H.T. (2020), "Damage detection in a suspension bridge using modal flexibility method", Eng. Fail. Anal., 107, p. 104194. https://doi.org/10.1016/j.engfailanal.2019.104194
- Xu, Y.L., Huang, Q., Zhan, S., Su, Z.Q. and Liu, H.J. (2014), "Frf-based structural damage detection of controlled buildings with podium structures: Experimental investigation", J. Sound Vib., 333(13), 2762-2775. https://doi.org/10.1016/j.jsv.2014.02.010
- Xu, W., Zhu, W.D., Xu, Y.F. and Cao, M.S. (2020), "A comparative study on structural damage detection using derivatives of laser-measured flexural and longitudinal vibration shapes", J. Nondestr. Eval., 39(3), 17. https://doi.org/10.1007/s10921-020-00702-4
- Zhu, X., Wang, Y., Li, Y., Tan, Y., Wang, G. and Song, Q. (2019), "A new unsupervised feature selection algorithm using similarity-based feature clustering", Computat. Intell., 35(1), 2-22. https://doi.org/10.1111/coin.12192