DOI QR코드

DOI QR Code

Experimental and numerical study on the dynamic behavior of a semi-active impact damper

  • Zheng Lu (Department of Disaster Mitigation for Structures, Tongji University) ;
  • Mengyao Zhou (Department of Disaster Mitigation for Structures, Tongji University) ;
  • Jiawei Zhang (Department of Disaster Mitigation for Structures, Tongji University) ;
  • Zhikuang Huang (Department of Disaster Mitigation for Structures, Tongji University) ;
  • Sami F. Masri (Viterbi School of Engineering, University of Southern California)
  • Received : 2022.10.02
  • Accepted : 2023.03.07
  • Published : 2023.05.25

Abstract

Impact damper is a passive damping system that controls undesirable vibration with mass block impacting with stops fixed to the excited structure, introducing momentum exchange and energy dissipation. However, harmful momentum exchange may occur in the random excitation increasing structural response. Based on the mechanism of impact damping system, a semi-active impact damper (SAID) with controllable impact timing as well as a semi-active control strategy is proposed to enhance the seismic performance of engineering structures in this paper. Comparative experimental studies were conducted to investigate the damping performances of the passive impact damper and SAID. The extreme working conditions for SAID were also discussed and approaches to enhance the damping effect under high-intensity excitations were proposed. A numerical simulation model of SAID attached to a frame structure was established to further explore the damping mechanism. The experimental and numerical results show that the SAID has better control effect than the traditional passive impact damper and can effectively broaden the damping frequency band. The parametric studies illustrate the mass ratio and impact damping ratio of SAID can significantly influence the vibration control effect by affecting the impact force.

Keywords

Acknowledgement

Financial support from the National Natural Science Foundation of China (52178296) is highly appreciated. This work is also supported by Program of Shanghai Academic Research Leader (20XD1423900) and Top Discipline Plan of Shanghai Universities-Class I (20223YB15).

References

  1. Chung, L.L., Lai, Y.A., Yang, C.S.W., Lien, K.H. and Wu, L.Y. (2013), "Semi-active tuned mass dampers with phase control", J. Sound Vib., 332(15), 3610-3625. https://doi.org/10.1016/j.jsv.2013.02.008
  2. Domizio, M.N., Ambrosini, D. and Curadelli, O. (2019), "TMD effectiveness in nonlinear RC structures subjected to near fault earthquakes", Smart Struct. Syst., Int. J., 24(4), 447-457. https://doi.org/10.12989/sss.2019.24.4.447
  3. Elias, S. and Matsagar, V. (2017), "Research developments in vibration control of structures using passive tuned mass dampers", Annual Rev. Control, 44, 129-156. https://doi.org/10.1016/j.arcontrol.2017.09.015
  4. Ferreira, F., Moutinho, C., Cunha, A. and Caetano, E. (2019), "Use of semi-active tuned mass dampers to control footbridges subjected to synchronous lateral excitation", J. Sound Vib., 446, 176-194. https://doi.org/10.1016/j.jsv.2019.01.026
  5. Gagnon, L., Morandini, M. and Ghiringhelli, G.L. (2019), "A review of particle damping modeling and testing", J. Sound Vib., 459, 114865. https://doi.org/10.1016/j.jsv.2019.114865
  6. Gharib, M. and Karkoub, M. (2017), "Experimental investigation of linear particle chain impact dampers in free-vibration suppression", J. Struct. Eng., 143(2), 040161600. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001638
  7. Gur, S., Xie, Y. and DesRoches, R. (2019), "Seismic fragility analyses of steel building frames installed with superelastic shape memory alloy dampers: Comparison with yielding dampers", J. Intell. Mater. Syst. Struct., 30(18-19), 2670-2687. https://doi.org/10.1177/1045389X19873408
  8. He, H., Wang, B. and Yan, W. (2021), "Mechanical Model and Optimization Analysis of Multiple Unidirectional SingleParticle Damper", J. Eng. Mech., 147(7), 04021040. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001950
  9. Hgsberg, J. (2011), "The role of negative stiffness in semi-active control of magneto-rheological dampers", Struct. Control Health Monitor., 18(3), 289-304. https://doi.org/10.1002/stc.371
  10. Hrovat, D., Barak, P. and Rabins, M. (1983), "Semi-active versus passive or active tuned mass dampers for structural control", J. Eng. Mech., 109(3), 691-705. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:3(691)
  11. Hwang, Y., Lee, C.W. and Jung, H.-J. (2020), "Feasibility of a new hybrid base isolation system consisting of MR elastomer and roller bearing", Smart Struct. Syst., Int. J., 25(3), 323-335. https://doi.org/10.12989/sss.2020.25.3.323
  12. Iurasov, V. and Mattei, P.-O. (2020), "Bistable nonlinear damper based on a buckled beam configuration", Nonlinear Dyn., 99(3), 1801-1822. https://doi.org/10.1007/s11071-019-05387-7
  13. Lai, Y.A., Chung, L.L., Yang, C.S.W. and Wu, L.Y. (2018), "Semiactive phase control of tuned mass dampers for translational and torsional vibration mitigation of structures", Struct. Control Health Monitor., 25(9), e2191.2191-e2191.2122. https://doi.org/10.1002/stc.2191
  14. Ledezma-Ramirez, D.F., Tapia-Gonzalez, P.E., Ferguson, N., Brennan, M. and Tang, B. (2019), "Recent advances in shock vibration isolation: An overview and future possibilities", Appl. Mech. Rev., 71(6), 060802. https://doi.org/10.1115/1.4044190
  15. Lu, Z., Masri, S.F. and Lu, X. (2011), "Parametric studies of the performance of particle dampers under harmonic excitation", Struct. Control Health Monitor., 18(1), 79-98. https://doi.org/10.1002/stc.359
  16. Lu, X., Zhang, Q., Weng, D., Zhou, Z., Wang, S., Mahin, S.A., Ding, S. and Qian, F. (2017), "Improving performance of a super tall building using a new eddy-current tuned mass damper", Struct. Control Health Monitor., 24(3), e1882. https://doi.org/10.1002/stc.1882
  17. Lu, Z., Zhang, H. and Masri, S.F. (2019), "Studies on vibration control effects of a semi-active impact damper for seismically excited nonlinear building", Smart Struct. Syst., Int. J., 24(1), 95-110. https://doi.org/10.12989/sss.2019.24.1.095
  18. Lu, Z., Zhang, J. and Wang, D. (2021), "Energy analysis of particle tuned mass damper systems with applications to MDOF structures under wind-induced excitation", J. Wind Eng. Industr. Aerodyn., 218, 104766. https://doi.org/10.1016/j.jweia.2021.104766
  19. Ma, R., Bi, K. and Hao, H. (2021), "Inerter-based structural vibration control: a state-of-the-art review", Eng. Struct., 243, 112655. https://doi.org/10.1016/j.engstruct.2021.112655
  20. Marano, G.C. and Greco, R. (2011), "Optimization criteria for tuned mass dampers for structural vibration control under stochastic excitation", J. Vib. Control, 17(5), 679-688. https://doi.org/10.1177/1077546310365988
  21. Marian, L. and Giaralis, A. (2017), "The tuned mass-damperinerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting", Smart Struct. Syst., Int. J., 19(6), 665-678. https://doi.org/10.12989/sss.2017.19.6.665
  22. Masri, S.F., Miller, R.K., Dehghanyar, T.J. and Caughey, T.K. (1989), "Active parameter control of nonlinear vibrating structures", J. Appl. Mech., 56(3), 658-666. https://doi.org/10.1115/1.3176143
  23. Nochebuena-Mora, E., Mendes, N., Lourenco, P.B. and Covas, J.A. (2021), "Vibration control systems: A review of their application to historical unreinforced masonry buildings", J. Build. Eng., 44, 103333. https://doi.org/10.1016/j.jobe.2021.103333
  24. Papalou, A. and Masri, S. (1998), "An experimental investigation of particle dampers under harmonic excitation", J. Vib. Control, 4(4), 361-379. https://doi.org/10.1177/107754639800400402
  25. Parulekar, Y. and Reddy, G. (2009), "Passive response control systems for seismic response reduction: A state-of-the-art review", Int. J. Struct. Stabil. Dyn., 9(01), 151-177. https://doi.org/10.1142/S0219455409002965
  26. Poplawski, B., Mikulowski, G., Pisarski, D., Wiszowaty, R. and Jankowski, L. (2019), "Optimum actuator placement for damping of vibrations using the Prestress-Accumulation Release control approach", Smart Struct. Syst., Int. J., 24(1), 27-35. https://doi.org/10.12989/sss.2019.24.1.027
  27. Song, G., Zhang, P., Li, L., Singla, M., Patil, D., Li, H. and Mo, Y. (2016), "Vibration control of a pipeline structure using pounding tuned mass damper", J. Eng. Mech., 142(6), 04016031. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001078
  28. Soria, J.M., Diaz, I.M. and Garcia-Palacios, J.H. (2017), "Vibration control of a time-varying modal-parameter footbridge: study of semi-active implementable strategies", Smart Struct. Syst., Int. J., 20(5), 525-537. https://doi.org/10.12989/sss.2017.20.5.525
  29. Sun, C. and Nagarajaiah, S. (2014), "Study on semi-active tuned mass damper with variable damping and stiffness under seismic excitations", Struct. Control Health Monitor., 21(6), 890-906. https://doi.org/10.1002/stc.1620
  30. Wang, L., Nagarajaiah, S., Shi, W. and Zhou, Y. (2021), "Semiactive control of walking-induced vibrations in bridges using adaptive tuned mass damper considering human-structureinteraction", Eng. Struct., 244, 112743. https://doi.org/10.1016/j.engstruct.2021.112743
  31. Xue, Q., Zhang, J., He, J., Zhang, C. and Zou, G. (2017), "Seismic control performance for pounding tuned massed damper based on viscoelastic pounding force analytical method", J. Sound Vib., 411, 362-377. https://doi.org/10.1016/j.jsv.2017.08.035
  32. Yang, R., Zhou, X. and Liu, X. (2002), "Seismic structural control using semi-active tuned mass dampers", Earthq. Eng. Eng. Vib., 1(1), 111-118. https://doi.org/10.1007/s11803-002-0014-0